如圖,拋物線的頂點O在坐標(biāo)原點,焦點在y軸負半軸上.
過點M(0,-2)作直線l與拋物線相交于A,B兩點,且滿足
(Ⅰ)求直線l和拋物線的方程;
(Ⅱ)當(dāng)拋物線上一動點P從點A向點B運動時,求△ABP面積的最大值.

【答案】分析:(Ⅰ)由題意設(shè)出直線和拋物線的方程,聯(lián)立方程用根與系數(shù)法和向量相等求出p,k的值;
(Ⅱ)由題意AB為定長,只要AB邊上的高最大,則三角形的面積最大;過點P的切線與l平行時,△APB得面積最大,求出P點的坐標(biāo),再求P點到直線AB的距離和AB的長,再求出面積.
解答:解:(Ⅰ)根據(jù)題意可設(shè)直線l的方程為y=kx-2,拋物線方程為x2=-2py(p>0) (2分)
得x2+2pkx-4p=0 (3分)
設(shè)點A(x1,y1),B(x2,y2)則x1+x2=-2pk,y1+y2=k(x1+x2)-4=-2pk2-4
(4分)

,解得(5分)
故直線l的方程為y=2x-2,拋物線方程為x2=-2y. (6分)
(Ⅱ)據(jù)題意,當(dāng)拋物線過點P的切線與l平行時,△APB得面積最大(7分)
設(shè)點P(x,y),由y'=-x,故由-x=2得x=-2,則
∴P(-2,-2) (9分)
∴點P到直線l的距離(10分)
,得x2+4x-4=0 (11分)
(12分)
∴△ABP的面積的最大值為(14分)
點評:本題為直線與拋物線的綜合問題,常用的方法聯(lián)立直線及拋物線的方程,再利用韋達定理求解,本題還用數(shù)形結(jié)合思想求最大值,考查了運算能力和數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線的頂點O在坐標(biāo)原點,焦點在y軸負半軸上.
過點M(0,-2)作直線l與拋物線相交于A,B兩點,且滿足
OA
+
OB
=(-4,-12)

(Ⅰ)求直線l和拋物線的方程;
(Ⅱ)當(dāng)拋物線上一動點P從點A向點B運動時,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-10學(xué)年黑龍江佳一中高二第三學(xué)段考試數(shù)學(xué)文 題型:解答題

(本小題滿分12分)如圖,拋物線的頂點O在坐標(biāo)原點,焦點在y軸的負半軸上,過點M(0,-2)作直線l與拋物線相交于A,B兩點,且滿足=(-4,-12).

 

(1)求直線l和拋物線的方程;

(2)當(dāng)拋物線上一動點P在點A和B之間運動時,求ΔABP面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省德州市陵縣一中高二期末數(shù)學(xué)模擬試卷1(解析版) 題型:解答題

如圖,拋物線的頂點O在坐標(biāo)原點,焦點在y軸負半軸上.
過點M(0,-2)作直線l與拋物線相交于A,B兩點,且滿足
(Ⅰ)求直線l和拋物線的方程;
(Ⅱ)當(dāng)拋物線上一動點P從點A向點B運動時,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省師大附中2010屆高三第二次月考(理) 題型:解答題

 

如圖,拋物線的頂點O在坐標(biāo)原點,焦點在y軸負半軸上,過點M(0,-2)作直線l與拋物線相交于A,B兩點,且滿足.

(Ⅰ)求直線l和拋物線的方程;

(Ⅱ)當(dāng)拋物線上一動點P從點A到B運動時,求△ABP面積的最大值.

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案