【題目】已知拋物線的焦點(diǎn)為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有當(dāng)點(diǎn)橫坐標(biāo)為時(shí),為正三角形

(1)求的方程;

(2)若直線,且 有且只有一個(gè)公共點(diǎn)

證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);

的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由

【答案】(1)(2)證明見解析,;存在,

【解析】

試題分析:(1)根據(jù)拋物線的焦半徑公式,結(jié)合等邊三角形的性質(zhì),求出的值,即可求解拋物線的方程;(2)設(shè)出點(diǎn)的坐標(biāo),求出直線的方程,利用,且有且只有一個(gè)公共點(diǎn),求出點(diǎn)的坐標(biāo),寫出直線的方程,將方程化為點(diǎn)斜式,即可求解定點(diǎn)的坐標(biāo);中由知直線過焦點(diǎn),所以設(shè)直線的方程為,再由直線的點(diǎn)斜式,利用點(diǎn)到直線的距離公式,再利用基本不等式即可求解結(jié)論

試題解析:(1)由題意知,設(shè),則的中點(diǎn)為,因?yàn)?/span>,由拋物線的定義知,解得(舍去),解得,所以拋物線的方程為

(2)證明:由(1)知,設(shè),因?yàn)?/span>,則,由得,,故,故直線的斜率,因?yàn)橹本和直線平行,設(shè)直線的方程為,代人拋物線的方程得,由題意,得,設(shè),則,當(dāng)時(shí),,可得直線的方程為,由,整理可得,直線恒過點(diǎn)當(dāng)時(shí),直線的方程為,過點(diǎn)所以直線過定點(diǎn)

知直線過焦點(diǎn),所以設(shè)直線的方程為,因?yàn)辄c(diǎn)在直線上,故,設(shè),直線的方程為,由,得,代人拋物線的方程得,所以,可求得所以點(diǎn)到直線的距離為,則的面積,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立所以的面積的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題對(duì)任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求的單調(diào)區(qū)間;

當(dāng)時(shí),的圖象恒在的圖象上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2009年推出一種新型家用轎車,購買時(shí)費(fèi)用萬元,每年應(yīng)交保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為萬元,從第三年起,每年的維修費(fèi)均比上一年增加萬元.

1)設(shè)該輛轎車使用的總費(fèi)用(包括購買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi)),表達(dá)式;

2)這種汽車使用多少年報(bào)廢最合算即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,所在平面互相垂直,且分別為的中點(diǎn).

(1)求證:;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,, ,中點(diǎn).

(1)求異面直線所成角的余弦值;

(2)點(diǎn)在線段,且,若直線與平面所成角的正弦值為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)恰為的零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.

(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;

(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個(gè)座談會(huì),現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位每天的用電量(度)與當(dāng)天最高氣溫)之間具有線性相關(guān)關(guān)系,下表是該單位隨機(jī)統(tǒng)計(jì)4天的用電量與當(dāng)天最高氣溫的數(shù)據(jù).

最高氣溫(℃)

26

29

31

34

用電量 ()

22

26

34

38

)根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);

)試預(yù)測某天最高氣溫為33℃時(shí),該單位當(dāng)天的用電量(精確到1度).

查看答案和解析>>

同步練習(xí)冊(cè)答案