【題目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,則異面直線AB1和BC1所成角的正弦值為(  )

A. 1 B. C. D.

【答案】A

【解析】

設線段A1B1,AB的中點分別為O,D,OC1平面ABB1A1,的方向分別為x,y,z軸的正方向建立空間直角坐標系,利用向量法求異面直線AB1和BC1所成角的正弦值.

設線段A1B1,AB的中點分別為O,D,OC1平面ABB1A1,的方向分別為x,y,z軸的正方向建立空間直角坐標系,如圖,

A(-1,0,),B1(1,0,0),B(1,0,),C1(0,,0),

所以=(2,0,-),=(-1,,-).

因為=(2,0,-)·(-1,,-)=0,

所以,即異面直線AB1BC1所成角為直角,則其正弦值為1.

故答案為:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量=(1,-3,2),=(-2,1,1),點A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直線AB上,是否存在一點E,使得?(O為原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC,AB=AC=4,BC=2,點D為AB延長線上一點,BD=2,連結CD,則△BDC的面積是 , com∠BDC=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間中三點A-2,0,2,B-1,1,2,C-3,0,4,設a=,b=

1求向量a與向量b的夾角的余弦值;

2若ka+b與ka-2b互相垂直,求實數(shù)k的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大;
(3)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣2x+ex ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π].
(Ⅰ)若 ,求x的值;
(Ⅱ)記f(x)= ,求f(x)的最大值和最小值以及對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,空間四邊形ABCD的兩條對棱AC,BD互相垂直,AC,BD的長分別為8和2,則平行四邊形兩條對棱的截面四邊形EFGH在平移過程中,面積的最大值是_______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題:

①“的充要條件;

②“一元二次不等式的解集為R”的充要條件;

③“直線平行于直線的充分不必要條件;

④“的必要不充分條件.

其中真命題的序號為____________.

查看答案和解析>>

同步練習冊答案