已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)在[上的單調(diào)性;
(Ⅱ)如果,是函數(shù)的兩個(gè)零點(diǎn),為函數(shù)的導(dǎo)數(shù),證明:.
(Ⅰ)當(dāng)時(shí),函數(shù)在上單調(diào)遞減;(Ⅱ)詳見(jiàn)解析.
解析試題分析:(Ⅰ)不是常見(jiàn)的函數(shù)的單調(diào)性問(wèn)題,可以采用求導(dǎo)得方法.通過(guò)定導(dǎo)數(shù)的正負(fù)來(lái)確定單調(diào)性.在本題中,求導(dǎo)得,但發(fā)現(xiàn)還是無(wú)法直接判斷其正負(fù).這時(shí)注意到在上單調(diào)遞減,可以得到其最大值,即,而,所以,從而得函數(shù)在上單調(diào)遞減;(Ⅱ)通過(guò),是函數(shù)的兩個(gè)零點(diǎn)把用表示出來(lái),代入中,由分成與兩段分別定其正負(fù).易知為負(fù),則化成,再將視為整體,通過(guò)研究的單調(diào)性確定的正負(fù),從而最終得到.本題中通過(guò)求導(dǎo)來(lái)研究的單調(diào)性,由其最值確定的正負(fù).其中要注意的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8f/a/1bplj2.png" style="vertical-align:middle;" />,從而這個(gè)隱含范圍.
試題解析:(Ⅰ), 1分
易知在上單調(diào)遞減, 2分
∴當(dāng)時(shí),. 3分
當(dāng)時(shí),在上恒成立.
∴當(dāng)時(shí),函數(shù)在上單調(diào)遞減. 5分
(Ⅱ),是函數(shù)的兩個(gè)零點(diǎn),
(1)
(2) 6分
由(2)-(1)得:
, 8分
,所以
,
將代入化簡(jiǎn)得: 9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/f/tsmjb.png" style="vertical-align:middle;" />,故只要研究的符號(hào)
10分
令,則,且,
令, 12分
所以,
當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,所以當(dāng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵求函數(shù)的值域;
⑶已知對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求在最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),設(shè)曲線(xiàn)在與軸交點(diǎn)處的切線(xiàn)為,為的導(dǎo)函數(shù),滿(mǎn)足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求在的延長(zhǎng)線(xiàn)上,在的延長(zhǎng)線(xiàn)上,且對(duì)角線(xiàn)過(guò)點(diǎn).已知米,米。
(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng),的長(zhǎng)度分別是多少時(shí),花壇的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中.
(1)若時(shí),記存在使
成立,求實(shí)數(shù)的取值范圍;
(2)若在上存在最大值和最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是的一個(gè)極值點(diǎn).
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè),試問(wèn)過(guò)點(diǎn)可作多少條直線(xiàn)與曲線(xiàn)相切?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知常數(shù)、、都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為,的解集為.
(Ⅰ)若的極大值等于,求的極小值;
(Ⅱ)設(shè)不等式的解集為集合,當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com