給出下列四個命題,其中不正確的是( 。
A、函數(shù)y=tanx是增函數(shù)
B、y=|sin2x|的最小正周期是
π
2
C、函數(shù)y=cosx在[2kπ+π,2kπ+
4
](k∈z)上是增函數(shù)
D、函數(shù)y=tan(x+
π
4
)是周期函數(shù)
考點:命題的真假判斷與應用
專題:三角函數(shù)的圖像與性質(zhì),簡易邏輯
分析:A.函數(shù)y=tanx在定義域上不是增函數(shù),可知不正確;
B.由于f(x+
π
2
)
=|sin2(x+
π
2
)|
=|sin2x|=f(x),即可判斷出;
C.利用余弦函數(shù)的單調(diào)性可得:函數(shù)y=cosx在[2kπ+π,2kπ+
4
](k∈z)上是增函數(shù);
D.由于f(x+π)=tan(x+π+
π
4
)=tan(x+
π
4
)
=f(x),可得f(x)是周期函數(shù).
解答: 解:A.沒有給出x的取值范圍,函數(shù)y=tanx在定義域上不是增函數(shù),因此不正確;
B.∵f(x+
π
2
)
=|sin2(x+
π
2
)|
=|sin2x|=f(x),因此最小正周期是
π
2
,正確;
C.函數(shù)y=cosx在[2kπ+π,2kπ+
4
](k∈z)上是增函數(shù),正確;
D.∵f(x+π)=tan(x+π+
π
4
)=tan(x+
π
4
)
=f(x),∴f(x)是周期函數(shù),正確.
綜上可得:只有A不正確.
故選:A.
點評:本題考查了三角函數(shù)的單調(diào)性周期性,考查了推理能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為六級,相對應空氣質(zhì)量的六個類別(見表),指數(shù)越大,級別越高說明污染情況越嚴重,對人體的危害也越大.
級別
指數(shù)
當日數(shù)(微克/立方米)范圍0,5050,100100,150150,200200,300300,500
空氣質(zhì)量優(yōu)輕度污染中度污染重度污染嚴重污染
為了調(diào)查某城市空氣質(zhì)量狀況,對近300天空氣中PM2.5濃度進行統(tǒng)計,得出這300天中PM2.5濃度的頻率分布直方圖.將PM2.5濃度落入各組的頻率視為概率,并假設每天的PM2.5濃度相互獨立.
(Ⅰ)當空氣質(zhì)量指數(shù)為一級或二級時,人們可正常進行戶外運動,根據(jù)樣本數(shù)據(jù)頻率分布直方圖,估算該市居民每天可正常進行戶外運動的概率;
(Ⅱ)當空氣質(zhì)量為“重度污染”和“嚴重污染”時,出現(xiàn)霧霾天氣的概率為
5
8
,求在未來2天里,該市恰好有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過定點M(1,2)作兩條相互垂直的直線l1、l2,設原點到直線l1、l2的距離分別為d1、d2,則d1+d2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①任何一條直線都有唯一的傾斜角;
②任何一條直線都有唯一的斜率;
③傾斜角為90°的直線不存在;
④傾斜角為0°的直線只有一條.
其中正確的有( 。
A、0個B、1個C、2個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列四個命題中,真命題的個數(shù)是
 

①?x∈R,x2+x+3>0;
②?x∈Q,
1
3
x2+
1
2
x+1是有理數(shù);
③?α,β∈R,使sin(α+β)=sinα+sinβ;
④?x0,y0∈Z,使3x0-2y0=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在邊長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為CC1,C1D1,D1D,CD的中點,N是BC的中點,M在四邊形EFGH上以及其內(nèi)部運動,若MN∥平面A1BD,則M的軌跡的長度是( 。
A、
2
B、2
C、π
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x-2,求f(0)、f(1)、f(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,把等腰直角三角形ABC沿斜邊AB旋轉(zhuǎn)至△ABD的位置,使CD=AC,求證:平面ABD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga
x-1
x+1
(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論f(x)在(1,+∞)上的單調(diào)性,并用定義證明;
(3)令g(x)=1+logax,當[m,n]?(1,+∞)(m<n)時,f(x)在[m,n]上的值域是[g(n),g(m)],求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案