【題目】如圖,已知拋物線 與圓 )相交于、、四個(gè)點(diǎn).

(Ⅰ)求的取值范圍;

(Ⅱ)當(dāng)四邊形的面積最大時(shí),求對角線、的交點(diǎn)的坐標(biāo).

【答案】(12

【解析】()將拋物線代入圓的方程,消去,整理得.............(1

拋物線與圓相交于、、、四個(gè)點(diǎn)的充要條件是:方程(1)有兩個(gè)不相等的正根

{解這個(gè)不等式組得.

II) 設(shè)四個(gè)交點(diǎn)的坐標(biāo)分別為、、。則直線AC、BD的方程分別為

解得點(diǎn)P的坐標(biāo)為。則由(I)根據(jù)韋達(dá)定理有由于四邊形ABCD為等腰梯形,因而其面積

,則下面求的最大值。

方法1:由三次均值有:

當(dāng)且僅當(dāng),即時(shí)取最大值。經(jīng)檢驗(yàn)此時(shí)滿足題意。故所求的點(diǎn)P的坐標(biāo)為

2:令,

,或(舍去)

當(dāng)時(shí),;當(dāng)時(shí);當(dāng)時(shí),

故當(dāng)且僅當(dāng)時(shí),有最大值,即四邊形ABCD的面積最大,故所求的點(diǎn)P的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x-1|+|2x-1|.

)若對x>0,不等式f(x)≥tx恒成立,求實(shí)數(shù)t的最大值M;

(Ⅱ)在()成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=2M.證明:a+b≥2ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(2cos, sin),=(cos,2cos),(ω>0),設(shè)函數(shù)f(x)=,且f(x)的最小正周期為π.

(1)求函數(shù)f(x)的表達(dá)式;

(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個(gè)論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國.禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計(jì)在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬件.今年擬下調(diào)銷售單價(jià)以提高銷量增加收益.據(jù)估算,若今年的實(shí)際銷售單價(jià)為元/件(),則新增的年銷量(萬件).

(1)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關(guān)系式;

(2)商戶甲今年采取降低單價(jià)提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號(hào)零件,按規(guī)定該型號(hào)零件的質(zhì)量指標(biāo)值落在內(nèi)為優(yōu)質(zhì)品.從兩個(gè)企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了500件,測量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質(zhì)量指標(biāo)值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為質(zhì)量指標(biāo)值的樣本平均數(shù)(注:求時(shí),同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計(jì)所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于71.92的產(chǎn)品的概率.(精確到0.001)

(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并問能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.

附注:

參考數(shù)據(jù): ,

參考公式: , ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),QMN的中點(diǎn).

(1)求圓A的方程;

(2)當(dāng)|MN|=2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子公司開發(fā)一種智能手機(jī)的配件,每個(gè)配件的成本是15元,銷售價(jià)是20元,月平均銷售件,通過改進(jìn)工藝,每個(gè)配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果每個(gè)配件的銷售價(jià)提高的百分率為,那么月平均銷售量減少的百分率為,記改進(jìn)工藝后電子公司銷售該配件的月平均利潤是(元).

(1)寫出的函數(shù)關(guān)系式;

(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價(jià),使電子公司銷售該配件的月平均利潤最大.

查看答案和解析>>

同步練習(xí)冊答案