已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)上的值域;
(2)設(shè),若存在,使得以為三邊長的三角形不存在,求實(shí)數(shù)的取值范圍.

(1);(2).

解析試題分析:(1)將k=-4代入函數(shù)解析式,利用指數(shù)函數(shù)的性質(zhì)即可求出答案;(2)利用求出g(x),又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/9/gbiky.png" style="vertical-align:middle;" />為三邊長的三角形,故,令,化簡得,對(duì)k進(jìn)行分類討論,即可求出結(jié)果.
解:(1);
(2)由題意知,
,
,則
當(dāng)時(shí),,所以,即;
當(dāng)時(shí),,不滿足條件;
當(dāng)時(shí),,所以,即;
當(dāng)時(shí),,滿足條件;
當(dāng)時(shí),,滿足條件;
綜上所述,.
考點(diǎn):1.函數(shù)值域的求法;2.函數(shù)成立問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-2.
(1)判斷f(x)的奇偶性;
(2)求證:f(x)是R上的減函數(shù);
(3)求f(x)在區(qū)間[-3,3]上的值域;
(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,把邊長為10的正六邊形紙板剪去相同的六個(gè)角,做成一個(gè)底面為正六邊形的無蓋六棱柱盒子,設(shè)其高為h,體積為V(不計(jì)接縫).
(1)求出體積V與高h(yuǎn)的函數(shù)關(guān)系式并指出其定義域;
(2)問當(dāng)為多少時(shí),體積V最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)滿足條件.
(1)求;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于的一元二次函數(shù),設(shè)集合,分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為
(1)求函數(shù)有零點(diǎn)的概率;
(2)求函數(shù)在區(qū)間上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,不等式的解集為.
(1)求的值;
(2)若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若不等式的解集為,求的值;
(2)若存在,使,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案