【題目】已知圓.
(1)若圓的切線在軸、軸上的截距相等,求切線方程;
(2)從圓外一點向該圓引一條切線,切點為,且有(為坐標(biāo)原點),求使取得最小值時點的坐標(biāo).
【答案】(1)或或或;(2).
【解析】
(1)分兩種情況討論:①直線過原點,設(shè)所求切線方程為;②直線在軸、軸上的截距均為,設(shè)所求切線方程為.利用圓心到直線的距離等于半徑列等式,求出相應(yīng)的參數(shù),即可得出所求切線的方程;
(2)先由求得點的軌跡方程為,由此可得出當(dāng)與直線垂直時,最短,求出直線的方程,求出該直線與直線的交點,即為所求的點.
(1)①設(shè)圓的切線在軸、軸上的截距均為,則切線過原點,設(shè)所求切線方程為,即.
則圓心到切線的距離為,解得:或.
此時,所求切線的方程為或;
②若截距均不為,設(shè)所求切線方程為,
則圓心到切線的距離為,解得,
此時,所求切線方程為或.
綜上所述,所求切線方程為或或或;
(2)由題意可知,,則,
由得,化簡得.
所以,點的軌跡方程為,
要使最小,即最小,過作直線的垂線,垂線方程為,
聯(lián)立,解得,因此,所求的點的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在上恒成立,求正數(shù)的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點分別為F1,F2,P為橢圓C上一點,且PF2垂直于x軸,連結(jié)PF1并延長交橢圓于另一點Q,設(shè)=λ.
(1)若點P的坐標(biāo)為(2,3),求橢圓C的方程及λ的值;
(2)若4≤λ≤5,求橢圓C的離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下三個關(guān)于圓錐曲線的命題中:
①設(shè)為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線與橢圓有相同的焦點;
④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點滿足: .
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在區(qū)間M=[a,b](a<b)使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間,給出下列四個函數(shù):
①f(x),②f(x)=x3,③f(x)=cosx,④f(x)=tanx
其中存在“穩(wěn)定區(qū)間”的函數(shù)有( )
A.①②③B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點的直線與中心在原點,焦點在軸上且離心率為的橢圓相交于、兩點,直線過線段的中點,同時橢圓上存在一點與右焦點關(guān)于直線對稱.
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an=logn+1(n+2)(n∈N*)定義使a1a2…ak為整數(shù)的數(shù)k叫做企盼數(shù),則區(qū)間[1,2019]內(nèi)所有的企盼數(shù)的和是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考慮某長方體的三個兩兩相鄰的面上的三條對角線及體對角線(共四條線段),則正確的命題是( )
A. 必有某三條線段不能組成一個三角形的三邊
B. 任何三條線段都可組成三角形,其每個內(nèi)角都是銳角
C. 任何三條線段都可組成三角形,其中必有一個是鈍角三角形
D. 任何三條線段都可組成三角形,其形狀是“銳角的”或是“非銳角的”,隨長方體的長、寬、高而變化,不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com