設(shè)a,b,c是△ABC中∠A,∠B,∠C的對邊,a=2
3
,c=6,cosB=-
3
3
,則b=
 
;△ABC的面積為
 
考點:正弦定理,余弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,將a,b,cosB的值代入即可求出b的值;由cosB的值求出sinB的值,再由a與c的值,利用三角形面積公式即可求出三角形ABC面積.
解答: 解:∵a=2
3
,c=6,cosB=-
3
3
,
∴由余弦定理得:b2=a2+c2-2accosB=12+36+24=72,
則b=6
2

∵cosB=-
3
3
,B為三角形內(nèi)角,
∴sinB=
1-cos2B
=
6
3
,
則S△ABC=
1
2
acsinB=6
2

故答案為:6
2
;6
2
點評:此題考查了余弦定理,三角形面積公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)p:函數(shù)f(x)=
x2-4x+a2
的定義域為R;q:?m∈[-1,1],a2-5a-5≥m2恒成立;如果“p∨q”為真命題,且“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l經(jīng)過點P(2,-1),且在兩坐標軸上的截距之和為2,圓M的圓心在直線2x+y=0上,且與直線l相切于點P.
(1)求直線l的方程;
(2)求圓M的方程;
(3)求圓M在y軸上截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2為橢圓焦點,在橢圓上滿足∠F1PF2為直角的P點僅有兩個,則離心率e為
 
_.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an=(-1)n•n,其前n項和為Sn,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=8x的焦點到直線x-
3
y=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y>0,且x+2y=1,則u=
x+1
x
y+1
4y
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,該程序運行后輸出S的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在拋物線y2=4x上有一點M,它到直線y=x的距離為4
2
,如果點M的坐標為(m,n)且m,n∈R+,則
m
2n
的值為( 。
A、
1
2
B、1
C、
2
D、2

查看答案和解析>>

同步練習冊答案