【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開(kāi)始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

【答案】A
【解析】解:由題意可得出,此三次函數(shù)在x=±5處的導(dǎo)數(shù)為0,依次特征尋找正確選項(xiàng):
A選項(xiàng),導(dǎo)數(shù)為 ,令其為0,解得x=±5,故A正確;
B選項(xiàng),導(dǎo)數(shù)為 ,令其為0,x=±5不成立,故B錯(cuò)誤;
C選項(xiàng),導(dǎo)數(shù)為 ,令其為0,x=±5不成立,故C錯(cuò)誤;
D選項(xiàng),導(dǎo)數(shù)為 ,令其為0,x=±5不成立,故D錯(cuò)誤.
故選:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解導(dǎo)數(shù)的幾何意義(通過(guò)圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知sinα+cosα=,,

(1)求sin2α和tan2α的值;

(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查, 經(jīng)統(tǒng)計(jì)“青少年”與“中老年”的人數(shù)之比為9:11

關(guān)注

不關(guān)注

合計(jì)

青少年

15

中老年

合計(jì)

50

50

100

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認(rèn)為關(guān)注“一帶一路”是否和年齡段有關(guān)?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問(wèn)卷調(diào)查.在這9人中再選取3人進(jìn)行面對(duì)面詢(xún)問(wèn),記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

附:參考公式,其中

臨界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y2+x-6y+m=0與直線lx+2y-3=0

1)若直線l與圓C沒(méi)有公共點(diǎn),求m的取值范圍;

2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=1-a0a≠1)是定義在(-∞,+∞)上的奇函數(shù).

1)求a的值;

2)證明:函數(shù)fx)在定義域(-∞,+∞)內(nèi)是增函數(shù);

3)當(dāng)x∈(0,1]時(shí),tfx≥2x-2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程有兩個(gè)不等實(shí)數(shù)根,,且,則的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)A(1,1),B(2,3),C(3,2),點(diǎn)P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
(1)若 ,求| |;
(2)設(shè) =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)橢圓的右焦點(diǎn)軸的垂線,與橢圓在第一象限內(nèi)交于點(diǎn),過(guò)作直線的垂線,垂足為,

(1)求橢圓的方程;

(2)設(shè)為圓上任意一點(diǎn),過(guò)點(diǎn)作橢圓的兩條切線,設(shè)分別交圓于點(diǎn),證明:為圓的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn)(為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

同步練習(xí)冊(cè)答案