【題目】函數(shù)滿足如下四個(gè)條件:

定義域?yàn)?/span>

;

③當(dāng)時(shí),;

④對任意滿足.

根據(jù)上述條件,求解下列問題:

的值.

應(yīng)用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性.

求不等式的解集.

【答案】(1)0; (2)見解析; (3)

【解析】

(1) ,可得:;

,,可得.

(2) 上的增函數(shù).設(shè),利用,,

可得,結(jié)合時(shí),,利用單調(diào)性的定義可證.

(3)根據(jù),可得,所以原不等式可化為,再利用單調(diào)性可解得.

(1),

,,解得.

,.

,

,

,

所以.

(2) 上的增函數(shù).

證明如下:設(shè), 所以.

因?yàn)?/span>==,

.

根據(jù)增函數(shù)的定義可知, 上的增函數(shù).

(3)因?yàn)?/span>,

所以,

又因?yàn)?/span>,所以,

所以,

所以,

(2)知函數(shù)上單調(diào)遞增,

所以,解得:.

所以不等式的解集是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對任意的,恒有成立.

1)如果為奇函數(shù),求滿足的條件.

2)在(1)中條件下,若上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會(huì)》節(jié)目組決定把《將進(jìn)酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進(jìn)酒》與《望岳》相鄰,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有_____________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)Fx=min{2|x1|,x22ax+4a2}

其中min{p,q}=

)求使得等式Fx=x22ax+4a2成立的x的取值范圍;

)()求Fx)的最小值ma);

)求Fx)在區(qū)間[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),橢圓C:的左、右焦點(diǎn)分別為F1,F2,右頂點(diǎn)為A,上頂點(diǎn)為B,|OB|,|OF2|,|AB|成等比數(shù)列,橢圓C上的點(diǎn)到焦點(diǎn)F2的最短距離為

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)T為直線x=-3上任意一點(diǎn),過F1的直線交橢圓C于點(diǎn)P,Q,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于兩條平行直線、(下方)和圖象有如下操作:將圖象在直線下方的部分沿直線翻折,其余部分保持不變,得到圖象;將圖象在直線上方的部分沿直線翻折,其余部分保持不變,得到圖象:再將圖在直線下方的部分沿直線翻折,其余部分保持不變,得到圖象;再將圖象在直線上方的部分沿直線翻折,其余部分保持不變,得到圖象;以此類推…;直到圖象上所有點(diǎn)均在之間(、)操作停止,此時(shí)稱圖象為圖象關(guān)于直線、衍生圖形,線段關(guān)于直線的“衍生圖形”為折線段.

(1)直線型

平面直角坐標(biāo)系中,設(shè)直線,直線

令圖象的函數(shù)圖象,則圖象的解析式為

②令圖像的函數(shù)圖象,請你畫出的圖象

若函數(shù)的圖象與圖象有且僅有一個(gè)交點(diǎn),且交點(diǎn)在軸的左側(cè),那么的取值范圍是_______.

請你觀察圖象并描述其單調(diào)性,直接寫出結(jié)果_______.

請你觀察圖象并判斷其奇偶性,直接寫出結(jié)果_______.

圖象所對應(yīng)函數(shù)的零點(diǎn)為_______.

任取圖象中橫坐標(biāo)的點(diǎn),那么在這個(gè)變化范圍中所能取到的最高點(diǎn)的坐標(biāo)為(_______,_______),最低點(diǎn)坐標(biāo)為(_______,_______.

若直線與圖象2個(gè)不同的交點(diǎn),則的取值范圍是_______.

根據(jù)函數(shù)圖象,請你寫出圖象的解析式_______.

(2)曲線型

若圖象為函數(shù)的圖象,

平面直角坐標(biāo)系中,設(shè)直線,直線,

則我們可以很容易得到所對應(yīng)的解析式為.

請畫出的圖象,記所對應(yīng)的函數(shù)解析式為.

函數(shù)的單調(diào)增區(qū)間為_______,單調(diào)減區(qū)間為_______.

當(dāng)時(shí)候,函數(shù)的最大值為_______,最小值為_______.

若方程有四個(gè)不同的實(shí)數(shù)根,則的取值范圍為_______.

(3)封閉圖形型

平面直角坐標(biāo)系中,設(shè)直線,直線

設(shè)圖象為四邊形,其頂點(diǎn)坐標(biāo)分別為,,,,四邊形關(guān)于直線、的“衍生圖形”為.

的周長為_______.

②若直線平分的周長,_______.

③將沿右上方方向平移個(gè)單位,則平移過程中所掃過的面積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn).用,分別表示烏龜和兔子所行的路程,為時(shí)間,則與故事情節(jié)相吻合的是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1)判斷函數(shù)f(x)的奇偶性;

(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.

(3)若對任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案