設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點(diǎn)分別為A(-
2
,0)、B(
2
,0),離心率e=
2
2
.過(guò)該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長(zhǎng)線(xiàn)上,且|PC|=(
2
-1)|PQ|.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)C的軌跡E的方程;
(3)設(shè)直線(xiàn)MN過(guò)橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且|MN|=
8
2
7
,求直線(xiàn)MN的方程.
考點(diǎn):圓錐曲線(xiàn)的軌跡問(wèn)題
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:(1)利用橢圓離心率的定義,求出幾何量,即可求橢圓的方程;
(2)根據(jù)|PC|=(
2
-1)|PQ|,確定C,P坐標(biāo)之間的關(guān)系,即可求動(dòng)點(diǎn)C的軌跡E的方程;
(3)分類(lèi)討論,設(shè)出直線(xiàn)方程,代入橢圓方程,利用韋達(dá)定理,計(jì)算弦長(zhǎng),根據(jù)|MN|=
8
2
7
,可求直線(xiàn)的斜率,從而可求直線(xiàn)MN的方程.
解答: 解:(1)由題意可得,a=
2
,
∵e=
2
2
,∴c=1,(2分)
∴b2=a2-c2=1,(3分)
所以橢圓的方程為
x2
2
+y2=1
.                                  (4分)
(2)設(shè)C(x,y),P(x0,y0),由題意得
x=x0
y=
2
y0
,即
x0=x
y0=
y
2
,(6分)
代入橢圓得
x2
2
+
y2
2
=1
,即x2+y2=2.
即動(dòng)點(diǎn)的軌跡E的方程為x2+y2=2.  (8分)
(3)若直線(xiàn)MN的斜率不存在,則方程為x=1,所以|MN|=
2
8
2
7
.(9分)
所以直線(xiàn)MN的斜率存在,設(shè)為k,直線(xiàn)MN的方程為y=k(x-1),
x2
2
+y2=1
y=k(x-1)
,得(
1
2
+k2)x2-2k2x+k2-1=0
.(10分)
因?yàn)椤?2(k2+1)>0,所以x1,2=
4k2±
2k2+2
2(2k2+1)

設(shè)M(x1,y1),N(x2,y2),則x1+x2=
4k2
1+2k2
,x1x2=
2k2-2
1+2k2
          (11分)
所以|MN|=
1+k2
×
(x1+x2)2-4x1x2
=
8
2
7
,
1+k2
×
16k4
(1+2k2)2
-
8k2-8
1+2k2
=
8
2
7
,(12分)
解得k=±
3
.(13分)
故直線(xiàn)MN的方程為y=
3
(x-1)或y=-
3
(x-1)(14分)
點(diǎn)評(píng):本題考查橢圓方程,考查直線(xiàn)與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中最小正周期為
π
2
的是( 。
A、y=|sin4x|
B、y=sinxcos(x+
π
6
)
C、y=sin(cosx)
D、y=sin4x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),F(xiàn)(1,0),動(dòng)點(diǎn)P滿(mǎn)足
AP
AF
=2|
FP
|

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)在直線(xiàn)l:y=2x+2上取一點(diǎn)Q,過(guò)點(diǎn)Q作軌跡C的兩條切線(xiàn),切點(diǎn)分別為M,N.問(wèn):是否存在點(diǎn)Q,使得直線(xiàn)MN∥l?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C的內(nèi)接正方形相對(duì)的兩個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,-1),B(3,5);
(I)求圓C的方程
(II)若過(guò)點(diǎn)M(-2,0)的直線(xiàn)與圓C有且只有一個(gè)公共點(diǎn),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)F(x)=
x3-ax2+a2x     (x>a)
1
3
x3+ax2-a2x    (x≤a)
的導(dǎo)函數(shù)為g(x).
(Ⅰ) 求函數(shù)g(x)的解析式;
(Ⅱ)求函數(shù)g(x)的最小值;
(Ⅲ)當(dāng)x>a時(shí),求函數(shù)f(x)=F(x)-x的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,B+C=2A,且c=1,b=
3
則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△AnBnCn中,記角An、Bn、Cn所對(duì)的邊分別為an、bn、cn,且這三角形的三邊長(zhǎng)是公差為1的等差數(shù)列,若最小邊an=n+1,則
lim
n→∞
Cn
=( 。
A、
π
2
B、
π
3
C、
π
4
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把長(zhǎng)為1的鐵絲截成三段,則這三段恰好能?chē)扇切蔚母怕适牵ā 。?/div>
A、
1
2
B、1
C、
1
4
D、
1
8

查看答案和解析>>

同步練習(xí)冊(cè)答案