精英家教網 > 高中數學 > 題目詳情

【題目】從一堆產品(其中正品與次品數均多于2件)中任取2件,觀察正品件數和次品件數,則下列每對事件中,是對立事件的是(
A.恰好有1件次品和恰好有兩件次品
B.至少有1件次品和全是次品
C.至少有1件次品和全是正品
D.至少有1件正品和至少有1件次品

【答案】C
【解析】解:∵從一堆產品(其中正品與次品都多于2件)中任取2件,觀察正品件數和次品件數,
∴在A中,恰好有1件次品和恰好有2件次品不能同時發(fā)生,但能同時不發(fā)生,
∴恰好有1件次品和恰好有2件次品是互斥事件但不是對立事件;
在B中,至少有1件次品和全是次品,能同時發(fā)生,
∴至少有1件次品和全是次品不是互斥事件,故不是對立事件;
在C中,至少有1件次品和全是正品不能同時發(fā)生,也不能同時不發(fā)生,
∴至少有1件次品和全是正品是對立事件,故C成立;
在D中,至少有1件正品和至少有1件次品能同時發(fā)生,
∴至少有1件正品和至少有1件次品不是互斥事件,故不是對立事件;
故選:C.
【考點精析】關于本題考查的互斥事件與對立事件,需要了解互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生;而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】偶函數f(x)的定義域為[t﹣4,t],則t=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=x3+ax2+3x﹣9,已知f(x)在x=﹣3時取得極值,則a等于(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損.3萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤. (Ⅰ)將T表示為x的函數,求出該函數表達式;
(Ⅱ)根據直方圖估計利潤T不少于57萬元的概率;
(Ⅲ)根據頻率分布直方圖,估計一個銷售季度內市場需求量x的平均數與中位數的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出如下三個命題: ①若“p∧q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>bb﹣1”的否命題為“若a≤b,則2a≤2b﹣1”;
③在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中不正確命題的個數是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)=2xf′(1)+x2 , 則f′(0)等于(
A.2
B.0
C.﹣2
D.﹣4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“x<2”是“x2<4”的(
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U=R,集合A={x|x≥﹣1},集合B={x|y=lg(x﹣2)},則A∩(UB)=(
A.[﹣1,2)
B.[﹣1,2]
C.[2,+∞)
D.[﹣1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內戰(zhàn)平,直接進入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派出一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學無需出場),由于一班同學平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中率只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.
(1)定義事件A為“一班第三位同學沒能出場罰球”,求事件A發(fā)生的概率;
(2)若兩隊在前三輪點球結束后打平,則進入一對一點球決勝,一對一點球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某隊隊員射入點球且另一隊隊員未能射入,則比賽結束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽.若直至雙方場上每名隊員都已經出場罰球,則比賽亦結束,雙方用過抽簽決定勝負,以隨機變量X記錄雙方進行一對一點球決勝的輪數,求X的分布列與數學期望.

查看答案和解析>>

同步練習冊答案