如圖,ABCD是長(zhǎng)方形海域,其中AB=10海里,AD=10
2
海里.現(xiàn)有一架飛機(jī)在該海域失事,兩艘海事搜救船在A處同時(shí)出發(fā),沿直線AP、AQ向前聯(lián)合搜索,且∠PAQ=
π
4
(其中P、Q分別在邊BC、CD上),搜索區(qū)域?yàn)槠矫嫠倪呅蜛PCQ圍成的海平面.設(shè)∠PAB=θ,搜索區(qū)域的面積為S. 
(1)試建立S與tanθ的關(guān)系式,并指出tanθ的取值范圍;
(2)求S的最大值,并指出此時(shí)θ的值.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:解三角形
分析:(1)先分別求得△APB和△ADQ的面積,進(jìn)而根據(jù)作差表示出S并根據(jù)圖象求得tanθ的取值范圍.
(2)利用基本不等式求得S的最小值,并求得取得等號(hào)時(shí)tanθ的值.
解答: 解:(1)在Rt△APB中,BP=10tanθ,S△ABP=
1
2
×10×10tanθ=50tanθ

在Rt△ADQ中,DQ=10
2
tan(
π
4
-θ)
,S△ADQ=
1
2
×10
2
×10
2
tan(
π
4
-θ)=100tan(
π
4
-θ)

S=100
2
-50tanθ-100tan(
π
4
-θ)
=100
2
-50tanθ-100×
1-tanθ
1+tanθ
,
其中
0≤tanθ≤1
0≤tan(
π
4
-θ)≤
2
2
,解得:3-2
2
≤tanθ≤1

S=100
2
-50tanθ-100×
1-tanθ
1+tanθ
3-2
2
≤tanθ≤1

(2)∵tanθ>0,S=100
2
-50(tanθ+2×
1-tanθ
1+tanθ
)=100
2
-50(tanθ+1+
4
tanθ+1
-3)
≤100
2
-50(2
(tanθ+1)•
4
tanθ+1
-3)=100
2
-50

當(dāng)且僅當(dāng)tanθ+1=
4
tanθ+1
時(shí)取等號(hào),亦即tanθ=1時(shí),Smax=100
2
-50

θ∈(0,
π
2
)

θ=
π
4

答:當(dāng)θ=
π
4
時(shí),S有最大值100
2
-50
點(diǎn)評(píng):本題主要考查了解三角形實(shí)際應(yīng)用的問題,利用基本不等式求最值.注重對(duì)學(xué)生綜合素質(zhì)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知PA垂直于△ABC所在平面,且∠ACB=90°,連結(jié)PB、PC,則圖形中互相垂直的平面有( 。
A、一對(duì)B、兩對(duì)C、三對(duì)D、四對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=
1
6
x3+
1
2
(a-2)x2,h(x)=2alnx,f(x)=g′(x)-h(x).
(1)當(dāng)a∈R時(shí),討論函數(shù)f(x)的單調(diào)性.
(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x1-x2
>a
恒成立,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
kx3-k2x2+12x
,是否存在實(shí)數(shù)k,使函數(shù)在(1,2)上遞減,在(2,+∞)上遞增?若存在,求出所有k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足對(duì)任意的n∈N*,都有a13+a23+…+an3=(a1+a2+…+an2且an>0.
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{
1
anan+2
}的前n項(xiàng)和為Sn,不等式Sn
1
6
(a2-5a+8)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=k2x4-
2
3
x3-kx2+2x
,是否存在實(shí)數(shù)k,使函數(shù)在(1,2)上遞減,在(2,+∞)上遞增?若存在,求出所有k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

淘寶賣家在某商品的所有買家中,隨機(jī)選擇男女買家各50位進(jìn)行調(diào)查,他們的評(píng)分等級(jí)如下:
評(píng)分等級(jí)[0,1](1,2](2,3](3,4](4,5]
女(人數(shù))28101812
男(人數(shù))4919108
(Ⅰ)從評(píng)分等級(jí)為(3,4]的人中隨機(jī)選2個(gè)人,求恰有1人是女性的概率;
(Ⅱ)規(guī)定:評(píng)分等級(jí)在[0,3]的為不滿意該商品,在(3,5]的為滿意該商品.完成下列2×2列聯(lián)表并幫助賣家判斷:能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為滿意該商品與性別有關(guān)系?
滿意該商品不滿意該商品總計(jì)
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C1的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),將曲線C1上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的
3
倍,得到曲線C2.以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線l:ρ(cosθ-2sinθ)=6.
(1)求曲線C2和直線l的普通方程;
(2)P為曲線C2上任意一點(diǎn),求點(diǎn)P到直線l的距離的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=a+bi(a,b∈R),且a2-(i-1)a+3b+2i=0
(1)求復(fù)數(shù)z;
(2)若z+
m
z
為實(shí)數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案