奇函數(shù)f(x)在定義域(-1,1)上是減函數(shù),且f(1+a)+f(1-a2)<0,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):奇偶性與單調(diào)性的綜合,函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:把f(1+a)+f(1-a2)<0利用奇函數(shù)的定義轉(zhuǎn)化為f(1+a)<f(a2-1),再利用f(x)在定義域(-1,1)上是減函數(shù)可得a的取值范圍.
解答: 解:∵f(x)是奇函數(shù),
∴f(1+a)+f(1-a2)<0?f(1+a)<f(a2-1),
∵函數(shù)f(x)在定義域(-1,1)上是減函數(shù),
1+a>a2-1
1+a<1
a2-1>-1

∴所求a的取值范圍是-1<a<0.
故答案為:(-1,0).
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的應(yīng)用.在利用函數(shù)的奇偶性解題時(shí),要注意自變量一定要在函數(shù)定義域內(nèi).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=3,且2,
an+1+an+1
,n+3成等比數(shù)列.
(Ⅰ)求a2,a3,a4以及數(shù)列{an}的通項(xiàng)公式an(要求寫(xiě)出推導(dǎo)過(guò)程);
(Ⅱ)令Tn=a1a2-a2a3+a3a4-a4a5+…a2na2n+1,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R上的減函數(shù),且f(1)=0,則不等式f(
1
x-1
)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-2|,若f(a)=f(b),且0<a<b,則ab的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=3,若
OC
=
1
2
OA
,
OD
=
1
2
OB
,AD與BC交于點(diǎn)P,則
OP
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=2,an+1=
1+an
1-an
 n∈N*,記Tn=a1a2…an,則T2010等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n是正整數(shù),集合M={1,2,…,2n}.求最小的正整數(shù)k,使得對(duì)于M的任何一個(gè)k元子集,其中必有4個(gè)互不相同的元素之和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義min{p,q}表示p、q中的較小者,若函數(shù)f(x)=min{log2x,3+log 
1
4
x},則滿足f(x)<2的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+2n,那么a2013的值是( 。
A、20112
B、2010×2009
C、2012×2011
D、2013×2012

查看答案和解析>>

同步練習(xí)冊(cè)答案