在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=2,c=3,cosB=
1
4
,求cosC.
考點:余弦定理
專題:計算題,解三角形
分析:由余弦定理,求出b,從而可求cosC.
解答: 解:∵△ABC中,a=2,c=3,cosB=
1
4
,
∴由余弦定理得:b2=a2+c2-2accosB=10,
b=
10
,
cosC=
a2+b2-c2
2ab
=
4+10-9
2×2×
10
=
10
8
點評:本題考查余弦定理,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈R,x02+(a-1)x0+1<0,命題q:?x∈R,(a-3)x2+(a-3)x-2<0,
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題q為真命題,求實數(shù)a的取值范圍;
(3)若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(
x
+1
)=x+2
x
-3,求函數(shù)f(x),并求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:(x+1)2+y2=1與圓C2:(x-3)2+(y-4)2=1的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量X~B(6,
1
3
),那么E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R且滿足
x≥1
x+y-6≤0
y≥x
,則z=x+2y的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)的圖象既關(guān)于點(1,1)對稱,又關(guān)于點(3,2)對稱,則f(0)+f(2)+f(4)+…+f(14)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
(sinx+cosx)2
2+2sin2x-cos22x
,若f(
8
+
α
2
)=
13
18
,f(
π
8
-
β
2
)=5,且0<α<
π
4
,
π
4
<β
4
,則sin(α+β)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3},B={b1,b2,b3},f:A→B為集合A到B的一個函數(shù),那么該函數(shù)的值域C的不同情況有
 
種.

查看答案和解析>>

同步練習(xí)冊答案