設(shè)函數(shù),用二分法求方程的近似根過程中,計算得到,則方程的根落在區(qū)間
A.B.
C.D.
A

試題分析:解:取,因為,所以方程近似根
,因為,所以方程近似根
所以應(yīng)選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=3ax2+2bx+c,a+b+c=0,且f(0)·f(1)>0.
(1)求證:-2<<-1.
(2)若x1,x2是方程f(x)=0的兩個實根,求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖象經(jīng)過三點A(,),B(-1,3),C(2,3),則這個二次函數(shù)的解析式為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>2x的解集為(-1,3).
(1)若函數(shù)g(x)=xf(x)在區(qū)間內(nèi)單調(diào)遞減,求a的取值范圍;
(2)當(dāng)a=-1時,證明方程f(x)=2x3-1僅有一個實數(shù)根;
(3)當(dāng)x∈[0,1]時,試討論|f(x)+(2a-1)x+3a+1|≤3成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達(dá)幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x+2x,g(x)=x+lnx的零點分別為x1,x2,則x1,x2的大小關(guān)系是(  )
A.x1<x2B.x1>x2
C.x1=x2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的一個零點是,則另一個零點是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,與函數(shù)y定義域相同的函數(shù)為(  ).
A.yB.yC.yxexD.y

查看答案和解析>>

同步練習(xí)冊答案