【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

【答案】1)見(jiàn)解析;(2.

【解析】試題分析:(1)直接計(jì)算,由絕對(duì)值不等式的性質(zhì)及基本不等式證之即可;

2,分區(qū)間討論去絕對(duì)值符號(hào)分別解不等式即可.

試題解析: (1)證明:函數(shù)fx=|x﹣a|,a0

fx+f=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|x﹣a++a|

=|x+|=|x|+≥2=2

2fx+f2x=|x﹣a|+|2x﹣a|a0

當(dāng)x≤a時(shí),fx=a﹣x+a﹣2x=2a﹣3x,則fx≥﹣a;

當(dāng)ax時(shí),fx=x﹣a+a﹣2x=﹣x,則fx)<﹣a

當(dāng)x時(shí),fx=x﹣a+2x﹣a=3x﹣2a,則fx≥﹣.則fx)的值域?yàn)?/span>[﹣,+∞.

不等式fx+f2x)<的解集非空,即為,解得,a﹣1,由于a0,

a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱, 分別是的中點(diǎn), ,

(1)證明: .

(2)棱上是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為若存在,說(shuō)明點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y (nZ)的圖像與兩坐標(biāo)軸都無(wú)公共點(diǎn),且其圖像關(guān)于y軸對(duì)稱n的值,并畫(huà)出函數(shù)圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖象與x軸無(wú)交點(diǎn),求a的取值范圍;

(2) 若函數(shù)[-1,1]上存在零點(diǎn),求a的取值范圍;

(3)設(shè)函數(shù),當(dāng)時(shí),若對(duì)任意的,總存在,使得,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人參加某種選拔測(cè)試,在備選的10道題中,甲答對(duì)其中每道題的概率都是,乙能答對(duì)其中的8道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出4道題進(jìn)行測(cè)試,只有選中的4個(gè)題目均答對(duì)才能入選;
(Ⅰ)求甲恰有2個(gè)題目答對(duì)的概率及甲答對(duì)題目數(shù)的數(shù)學(xué)期望與方差。
(Ⅱ)求乙答對(duì)的題目數(shù)X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷的奇偶性;

(2)用單調(diào)性的定義證明上的增函數(shù);

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題P:函數(shù)是增函數(shù),命題Q:

(1)寫(xiě)出命題Q的否命題,并求出實(shí)數(shù)的取值范圍,使得命題為真命題;

(2)如果是真命題,是假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案