平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于,當(dāng)長最小時,求直線的方程;
(3)問是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經(jīng)過原點.若存在,寫出直線的方程;若不存在,說明理由.

(1);(2)x+y﹣2=0;(3)。

解析試題分析:(1)因為O點到直線x﹣y+1=0的距離為,(2分)
所以圓O的半徑為,故圓O的方程為        4分
(2)設(shè)直線的方程為,即bx+ay﹣ab=0,
由直線與圓O相切,得,即,       6分

當(dāng)且僅當(dāng)a=b=2時取等號,此時直線l的方程為x+y﹣2=0      8分
(3)設(shè)存在斜率為2的直線滿足題意,設(shè)直線為:,
則:得:        10分
依題意得;,
因為以為直徑的圓經(jīng)過原點,
所以有:

所以存在斜率為2的直線滿足題意,直線為:        14分
考點:圓的方程;直線與圓的位置關(guān)系;基本不等式。
點評:此題主要考查了直線與圓的位置關(guān)系,涉及的知識較多,綜合性較強。熟練掌握定理及法則以及知識點的靈活應(yīng)用是解題的關(guān)鍵,是一道中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點為圓心的圓與軸交于點,與軸交于點,其中為坐標(biāo)原點。
(1)求證:的面積為定值;
(2)設(shè)直線與圓交于點,若,求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,與y軸交于點O, B,其中O為原點.
(Ⅰ)求證:△OAB的面積為定值;
(Ⅱ)設(shè)直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知直線經(jīng)過點,且和圓相交,截得的弦長為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
己知圓 直線.
(1) 求與圓相切, 且與直線平行的直線的方程;
(2) 若直線與圓有公共點,且與直線垂直,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理)(本題滿分14分)如圖,已知直線,直線以及上一點

(Ⅰ)求圓心M在上且與直線相切于點的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線分別與直線、圓⊙依次相交于A、B、C三點,
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓和定點,由圓外一點向圓引切線,切點為,且滿足,
(Ⅰ)求實數(shù)間滿足的等量關(guān)系;
(Ⅱ)求線段長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓內(nèi)一定點,為圓上的兩不同動點.
(1)若兩點關(guān)于過定點的直線對稱,求直線的方程.
(2)若圓的圓心與點關(guān)于直線對稱,圓與圓交于兩點,且,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)如圖,A點在x軸上方,外接圓半徑,弦軸上且軸垂直平分邊,
(1)求外接圓的標(biāo)準(zhǔn)方程
(2)求過點且以為焦點的橢圓方程

查看答案和解析>>

同步練習(xí)冊答案