為進一步保障和改善民生,國家“十二五”規(guī)劃綱要提出,“十二五”期間將提高住房
保障水平,使城鎮(zhèn)保障性信房覆蓋率達到20℅左右. 某城市2010年有商品房萬套,保障
性住房萬套(). 預計2011年新增商品房萬套,以后每年商品新增量是上一年新增
量的倍,問“十二五”期間(2011年~2015年)該城市保障性住房建設年均應增加多少
萬套才能使覆蓋率達到?
,,
解:設分別表示從年開始該城市第年的新建商品房數(shù)和保障性住房數(shù),
并且平均每年應建設保障性住房為萬套。
依題意得, ,
為數(shù)列的前項和,則      

        
故該城市保障性住房平均每年應建設萬套才能使覆蓋率達到。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設數(shù)列滿足:,
(1)求; (Ⅱ)令,求數(shù)列的通項公式;
(2)已知,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記?
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為?已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列是等比數(shù)列數(shù)列是等差數(shù)列,

(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和;
(Ⅲ)設比較大小,并證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知數(shù)列滿足,
(Ⅰ) 求數(shù)列{的前項和;
(Ⅱ)若存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)在數(shù)列中,已知.
(1)求數(shù)列、的通項公式;
(2)設數(shù)列滿足,求的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(理)正數(shù)列的前項和滿足:,常數(shù)
(1)求證:是一個定值;
(2)若數(shù)列是一個周期數(shù)列,求該數(shù)列的周期;
(3)若數(shù)列是一個有理數(shù)等差數(shù)列,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設數(shù)列的前n項和Sn,且,則數(shù)列的前11項和為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

請認真閱讀下列材料:
“楊輝三角” (1261年)是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如表1).在“楊輝三角”的基礎上德國數(shù)學家萊布尼茲發(fā)現(xiàn)了下面的單位分數(shù)三角形(單位分數(shù)是分子為1,分母為正整數(shù)的分數(shù)),稱為萊布尼茲三角形(如表2)
     
請回答下列問題:
(I)記為表1中第n行各個數(shù)字之和,求,并歸納出
(II)根據(jù)表2前5行的規(guī)律依次寫出第6行的數(shù).

查看答案和解析>>

同步練習冊答案