【題目】對于非負整數(shù)集合(非空),若對任意,或者,或者,則稱個好集合.以下記的元素個數(shù).

1)給出所有的元素均小于的好集合.(給出結(jié)論即可)

2)求出所有滿足的好集合.(同時說明理由)

3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.

【答案】1,,.(2;證明見解析.(3)證明見解析.

【解析】

1)根據(jù)好集合的定義列舉即可得到結(jié)果;

2)設(shè),其中,由;由可知,分別討論兩種情況可的結(jié)果;

3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.

1,,

2)設(shè),其中,

則由題意:,故,即,

考慮,可知:,,

,則考慮

,,則,

,但此時,,不滿足題意;

,此時,滿足題意,

,其中為相異正整數(shù).

3)記,則,

首先,,設(shè),其中

分別考慮和其他任一元素,由題意可得:也在中,

,,

,

對于,考慮,,其和大于,故其差,

特別的,,

,且,,

以此類推:,

,此時,

中存在元素,使得中所有元素均為的整數(shù)倍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線的極坐標方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)).

(1)若,求曲線的直角坐標方程以及直線的極坐標方程;

(2)設(shè)點,曲線與直線交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.

1)寫出曲線的普通方程和直線的直角坐標方程;

2)若直線與曲線相交于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋子中有紅、黃、藍、綠四個小球,有放回地從中任取一個小球,將“三次抽取后,紅色小球,黃色小球都取到”記為事件M,用隨機模擬的方法估計事件M發(fā)生的概率.利用電腦隨機產(chǎn)生整數(shù)0,1,2,3四個隨機數(shù),分別代表紅、黃、藍、綠四個小球,以每三個隨機數(shù)為一組,表示取小球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

110

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計事件M發(fā)生的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校要從甲、乙兩名同學中選擇一人參加該市組織的數(shù)學競賽,已知甲、乙兩名同學最近7次模擬競賽的數(shù)學成績(滿分100分)如下:

:79,81,83,84,8590,93

乙:75,78,82,84,90,9294.

1)完成答題卡中的莖葉圖;

2)分別計算甲、乙兩名同學最近7次模擬競賽成績的平均數(shù)與方差,并由此判斷該校應選擇哪位同學參加該市組織的數(shù)學競賽.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M過點且與直線相切.

(1)求動圓圓心M的軌跡C的方程;

(2)斜率為的直線l經(jīng)過點且與曲線C交于A,B兩點,線段AB的中垂線交x軸于點N,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方形中,分別為,邊上的中點,現(xiàn)將點為軸旋轉(zhuǎn)至點的位置,使得為直二面角.

(1)證明:;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

同步練習冊答案