【題目】定義:數(shù)列對(duì)一切正整數(shù)均滿足,稱數(shù)列凸數(shù)列,以下關(guān)于凸數(shù)列的說(shuō)法:

等差數(shù)列一定是凸數(shù)列;

首項(xiàng),公比的等比數(shù)列一定是凸數(shù)列;

若數(shù)列為凸數(shù)列,則數(shù)列是單調(diào)遞增數(shù)列;

若數(shù)列為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列

其中正確說(shuō)法的序號(hào)是_____________

【答案】②③④

【解析】

試題分析:中,由等差數(shù)列的性質(zhì)可得,不滿足,所以數(shù)列不是凸數(shù)列;中,因?yàn)閿?shù)列的首項(xiàng),公比,所以,所以,所以數(shù)列一定是凸數(shù)列;因?yàn)閿?shù)列為凸數(shù)列,所以數(shù)列對(duì)一切正整數(shù)均滿足,所以,所以數(shù)列是單調(diào)遞增數(shù)列是正確的;中,數(shù)列為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列是正確的綜上所述,②③④正確

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前三項(xiàng)分別為λ,6,n項(xiàng)和為Sn,Sk=165.

(1)λk的值;

(2)設(shè)bn且數(shù)列的前n項(xiàng)和Tn,證明:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí), 求曲線的極值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若對(duì)任意時(shí), 恒有成立, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;

(2)若函數(shù)(其中的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

137 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為

A.0.40 B.0.30

C.0.35 D.0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,相交于兩點(diǎn)

1當(dāng)時(shí),判斷直線與曲線的位置關(guān)系,并說(shuō)明理由;

2當(dāng)變化時(shí),求弦的中點(diǎn)的普通方程,并說(shuō)明它是什么曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)設(shè)

若函數(shù)處的切線過(guò)點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒(méi)有零點(diǎn),求的取值范圍.

2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長(zhǎng)為.點(diǎn)為圓上異于的任意一點(diǎn),直線軸交于點(diǎn),直線軸交于點(diǎn).

(1)求圓的方程;

(2)求證: 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案