已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}中的最大項(xiàng).
分析:(1)把2an=Sn•Sn-1(n≥2)中的an化為Sn-Sn-1,然后兩邊同除以Sn•Sn-1.結(jié)合等差數(shù)列定義可證;
(2)由(1)可求得Sn,根據(jù)an=
S1,n=1
Sn-Sn-1,n≥2
即可求得{an}的通項(xiàng)公式;
(3)根據(jù)n≥3時(shí)an的單調(diào)性及前三項(xiàng)即可求得最大項(xiàng);
解答:解(1)由2an=Sn•Sn-1(n≥2),得2(Sn-Sn-1)=Sn•Sn-1
所以
1
Sn
-
1
Sn-1
=-
1
2
(n≥2),
所以{
1
Sn
}
是等差數(shù)列;
(2)由(1)知,
1
Sn
=
1
3
+(n-1)(-
1
2
)
,
所以Sn=
6
5-3n
,
當(dāng)n=1時(shí),a1=3,
當(dāng)n≥2時(shí),an=Sn-Sn-1=
18
(3n-5)(3n-8)
,
an=
3,n=1
18
(3n-5)(3n-8)
,n≥2
;
(3)由a1,a2,a3及n≥3時(shí)an的單調(diào)性知:a3=
9
2
是最大項(xiàng);
點(diǎn)評(píng):本題考查利用數(shù)列遞推公式求數(shù)列通項(xiàng)、等差數(shù)列的定義及其判斷等知識(shí),屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
52
Sn-1
的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案