設(shè)
F1是橢圓
+
y2=1的左焦點,
O為坐標(biāo)原點,點
P在橢圓上,則
·
的最大值為________.
4+2
設(shè)
P(
x0,
y0),依題意可得
F1(-
,0),則
·
=
+
+
x0=
+1-
+
x0=
+
x0+1=
2.
又-2≤
x0≤2,所以當(dāng)
x0=2時,
·
取得最大值4+2
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過橢圓
+
=1(a>b>0)的左焦點F
1作x軸的垂線交橢圓于點P,F
2為右焦點,若∠F
1PF
2=60°,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓
+
=1(a>b>0)的離心率e=
,右焦點為F(c,0),方程ax
2+2bx+c=0的兩個實數(shù)根分別是x
1和x
2,則點P(x
1,x
2)到原點的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
和雙曲線
有相同的焦點
是它們的一個交點,則
的形狀是( )
A.銳角三角形 | B.直角三角形 |
C.鈍角三角形 | D.隨的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓C:
+
=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=
,則C的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
C與橢圓
=1有共同的焦點
F1,
F2,且離心率互為倒數(shù).若雙曲線右支上一點
P到右焦點
F2的距離為4,則
PF2的中點
M到坐標(biāo)原點
O的距離等于________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓的中心在原點,焦距為4,一條準(zhǔn)線為x=-4,則該橢圓的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
F1,
F2分別是橢圓
E:
x2+
=1(0<
b<1)的左、右焦點,過
F1的直線
l與
E相交于
A,
B兩點,且|
AF2|,|
AB|,|
BF2|成等差數(shù)列.
(1)求|
AB|;
(2)若直線
l的斜率為1,求
b的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖所示,橢圓
(
>b>0)的離心率e=
,左焦點為F,A、B、C為其三個頂點,直線CF與AB交于D點,則tan∠BDC的值等于 ( )
A.3
B.
C.
D.
查看答案和解析>>