【題目】 已知函數(shù)(其中為參數(shù)).

(1)當(dāng)時(shí),證明:不是奇函數(shù);

(2)如果是奇函數(shù),求實(shí)數(shù)的值;

(3)已知,在(2)的條件下,求不等式的解集.

【答案】(1)證明見解析;(2);(3)

【解析】

試題分析:(1)借助題設(shè)條件運(yùn)用奇函數(shù)的定義求解;(2)借助題設(shè)運(yùn)用奇函數(shù)的定義求解;(3)借助題設(shè)運(yùn)用函數(shù)的單調(diào)性求解和探求.

試題解析:

1),,

,不是奇函數(shù)………………………………4分

(2)是奇函數(shù)時(shí),,

對定義域內(nèi)任意實(shí)數(shù)成立,

化簡整理得關(guān)于的恒等式,

,即………………………………8分

(注:少一解扣1分)

(3)由題意得,,易判斷上遞減,,,,,即所求不等式的解集為………………………..14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為

(1)求的值;

(2)若不等式的解集為,不等式的解集為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響,對近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中,.

(1)根據(jù)散點(diǎn)圖判斷, 哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的年利潤的關(guān)系為.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)為何值時(shí),年利潤最大?

附:對于一組數(shù)據(jù), ,…, 其回歸直線的斜率和截距的最小二乘估計(jì)分別為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

(2)設(shè),若對任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面為等邊三角形,

,,分別為的中點(diǎn).

(I)求證:平面;

(II)求證:平面平面

(III)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線.

)求圓的標(biāo)準(zhǔn)方程;

)設(shè)直線經(jīng)過點(diǎn),且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線上.

(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

(3)設(shè)直線(2)中所求圓交于點(diǎn)、, 為直線上的動點(diǎn),直線,與圓的另一個(gè)交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案