【題目】本題滿分12分甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數(shù)據(jù);

2現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個分析,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由

參考公式:

【答案】1詳見解析2甲的成績較穩(wěn)定,派甲參賽比較合適

【解析】

試題分析:1將成績的十位數(shù)作為莖,個位數(shù)作為葉可得莖葉圖;2計算甲與乙的平均數(shù)與方差,比較平均數(shù)和方差即可求得結(jié)論

試題解析:1做莖葉圖如下

2派甲參加比賽比較合適。

,甲的成績較穩(wěn)定,派甲參賽比較合適。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,動點滿足成等差數(shù)列。

(1)求點的軌跡方程;

(2)對于軸上的點,若滿足,則稱點為點對應(yīng)的“比例點”,問:對任意一個確定的點,它總能對應(yīng)幾個“比例點”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋中裝有個形狀大小完全相同的小球,球的編號分別為,,,,

)若從袋中每次隨機(jī)抽取個球,有放回的抽取,求取出的兩個球編號之和為的概率.

)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,求恰有次抽到號球的概率.

)若一次從袋中隨機(jī)抽取個球,求球的最大編號為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓軸的正半軸交于點,以點為圓心的圓與圓交于,兩點.

(1)當(dāng)時,求的長;

(2)當(dāng)變化時,求的最小值;

(3)過點的直線與圓A切于點,與圓分別交于點,,若點的中點,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為層,則每平方米的平均建筑費用為 (單位:元).

(1)寫出樓房每平方米的平均綜合費用關(guān)于建造層數(shù)的函數(shù)關(guān)系式;

(2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年,京津冀等地數(shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量x(萬輛)

1

2

3

4

5

6

7

PM2.5的濃度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散點圖知yx具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;

(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預(yù)測該市車流量為8萬輛時PM2.5的濃度;

(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)

參考公式:回歸直線的方程是,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項,且滿足,,其中,設(shè)數(shù)列的前項和分別為,

Ⅰ)若不等式對一切恒成立,求

Ⅱ)若常數(shù)且對任意的,恒有,求的值.

Ⅲ)在(Ⅱ)的條件下且同時滿足以下兩個條件:

。┤舸嬖谖ㄒ徽麛(shù)的值滿足

恒成立.試問:是否存在正整數(shù),使得,若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測量可知邊界萬米,萬米,萬米.

(1)請計算原棚戶區(qū)建筑用地的面積及的長;

(2)因地理條件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請在圓弧上設(shè)計一點,使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下結(jié)論:

①函數(shù)是奇函數(shù);

②存在實數(shù),使得

③若是第一象限角且,則;

是函數(shù)的一條對稱軸方程;

⑤函數(shù)的圖形關(guān)于點成中心對稱圖形.

其中正確的結(jié)論的序號是__________.(填序號)

查看答案和解析>>

同步練習(xí)冊答案