【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|ax﹣2|.
(Ⅰ)當a=2時,解不等式f(x)>x+1;
(Ⅱ)若關(guān)于x的不等式f(x)+f(﹣x)< 有實數(shù)解,求m的取值范圍.
【答案】解:(Ⅰ)當a=2時,不等式為:|2x﹣2|>x+1,
當x≥1時,不等式化為:2x﹣2>x+1,解得x>3
當x<1時,不等式化為:2﹣2x>x+1,解得
綜上所述,解集為 ;
(II)因為f(x)+f(﹣x)=|ax﹣2|+|﹣ax﹣2|≥|ax﹣2﹣ax﹣2|=4
所以f(x)+f(﹣x)的最小值為4,
因為f(x)+f(﹣x)< 有實數(shù)解,
所以
【解析】(Ⅰ)把a=2代入不等式化簡后,對x分類討論,分別去掉絕對值求出每個不等式的解集,再取并集即得不等式的解集;(Ⅱ)利用絕對值三角不等式求出f(x)+f(﹣x)的最小值,結(jié)合題意列出不等式,求出實數(shù)m的范圍.
【考點精析】關(guān)于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x+1)的圖象關(guān)于直線x=﹣1對稱,且當x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),若a=0.76f(0.76),b=log 6f(log 6),c=60.6f(60.6),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M、N、T是橢圓 上三個點,M、N在直線x=8上的攝影分別為M1、N1 .
(Ⅰ)若直線MN過原點O,直線MT、NT斜率分別為k1 , k2 , 求證k1k2為定值.
(Ⅱ)若M、N不是橢圓長軸的端點,點L坐標為(3,0),△M1N1L與△MNL面積之比為5,求MN中點K的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐P﹣ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC= ,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE= ,點M在側(cè)棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|2x+1|.
(Ⅰ)若不等式f(x)≥a2﹣2a﹣1恒成立,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)m>0,n>0且m+n=1,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與平面α相交但不垂直,m為空間內(nèi)一條直線,則下列結(jié)論一定不成立的是( )
A.m⊥l,mα
B.m⊥l,m∥α
C.m∥l,m∩α≠
D.m⊥l,m⊥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體外接球的表面積為 ( )
A.9π
B.18π
C.36π
D.144π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知P是函數(shù)f(x)=ex(x>0)的圖象上的動點,該圖象在點P處的切線l交y軸于點M,過點P作l的垂線交y軸于點N,設(shè)線段MN的中點的縱坐標為t,則t的最大值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com