【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學選取若干大學生志愿者,某記者在該大學隨機調查了1000名大學生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學生

610

女大學生

90

合計

800

(1)根據(jù)題意完成表格;

(2)是否有的把握認為愿意做志愿者工作與性別有關?

【答案】(1)填表 如下圖;(2)沒有的把握認為愿意做志愿者工作與性別有關.

【解析】

(1)由題意,可完成列聯(lián)表。

(2)K2計算公式,可求得K2的值,進而利用臨界值判斷是否有把握認為有關系。

(1)補全聯(lián)立表得(每空一分):

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學生

500

110

610

女大學生

300

90

390

合計

800

200

1000

(2)因為的觀測值

∴沒有95%的把握認為愿意做志愿者工作與性別有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產兩種元件,其質量按測試指標劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產品中隨機抽取這兩種元件各件進行檢測,檢測結果記錄如下:







B






由于表格被污損,數(shù)據(jù)、看不清,統(tǒng)計員只記得,且、兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.

1)求表格中的值;

2)從被檢測的種元件中任取件,求件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種設備隨著使用年限的增加,每年的維護費相應增加.現(xiàn)對一批該設備進行調查,得到這批設備自購入使用之日起,前五年平均每臺設備每年的維護費用大致如下表:

年份(年)

1

2

3

4

5

維護費(萬元)

1.1

1.5

1.8

2.2

2.4

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)若該設備的價格是每臺5萬元,甲認為應該使用滿五年換一次設備,而乙則認為應該使用滿十年換一次設備,你認為甲和乙誰更有道理?并說明理由.

(參考公式: .)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(2cosx,t)(t∈R), =(sinx﹣cosx,1),函數(shù)y=f(x)= ,將y=f(x)的圖象向左平移 個單位長度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0, ]內的最大值為
(1)求t的值及y=f(x)的最小正周期;
(2)設△ABC的內角A,B,C的對邊分別為a,b,c,若 g( )=﹣1,a=2,求BC邊上的高的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(1)補全頻率分布直方圖并求、、的值;

(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗活動,其中選取人作為領隊,記選取的名領隊中年齡在歲的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調遞減區(qū)間是,單調遞增區(qū)間是.

(Ⅱ)當,即時,函數(shù)上單調遞增,

所以在區(qū)間上的最小值為.

,即時,

由(Ⅰ)知上單調遞減,在上單調遞增,

所以在區(qū)間上的最小值為.

,即時,函數(shù)上單調遞減,

所以在區(qū)間上的最小值為.

綜上,當時,的最小值為

時,的最小值為;

時,的最小值為.

型】解答
束】
19

【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.

1)求的方程;

2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個直角三角形的三個頂點分別在底面棱長為2的正三棱柱的側棱上,則該直角三角形斜邊的最小值為__________

【答案】

【解析】如圖,不妨設處, ,
則有
該直角三角形斜邊

故答案為.

型】填空
束】
16

【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)證明: ;
(2)證明:當a≥1時,f(x)≤eax﹣2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)的圖象上關于y軸對稱的點至少有5對,則實數(shù)a的取值范圍是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

查看答案和解析>>

同步練習冊答案