如圖,AB和BC分別與圓O相切于點(diǎn)D、C,AC經(jīng)過(guò)圓心O,且BC=2OC=4,則AD=
 
考點(diǎn):圓的切線的判定定理的證明
專題:選作題,立體幾何
分析:先證明Rt△ADO∽R(shí)t△ACB,可得AC=2AD.設(shè)AD=x,則
x2+4
+2=2x,即可求出AD.
解答: 解:因?yàn)锳B和BC分別與圓O相切于點(diǎn)D,C,所以ADO=∠ACB=90° 又因?yàn)椤螦=∠A,所以Rt△ADO∽R(shí)t△ACB,
所以
AD
AC
=
DO
CB
,因?yàn)锽C=2OC=2OD.
所以AC=2AD.
設(shè)AD=x,則OA=
x2+4

所以
x2+4
+2=2x,
所以x=
8
3

故答案為:
8
3
點(diǎn)評(píng):本題考查圓的切線,考查三角形相似的判定與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
(1-x)n
+aln(x-1),n∈N*,a為常數(shù).
(1)當(dāng)n=2時(shí),判斷f(x)的單調(diào)性,寫出單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),證明:對(duì)?n∈N*,當(dāng)x≥2時(shí),恒有y=f(x)圖象不可能在y=x-1圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知隨機(jī)變量η的概率分布如下表:
η 1 2 3 4 5 6
P 0.2 x 0.25 0.1 0.15 0.2
則x=
 
;P(η>3)=
 
;P(1<η≤4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下命題:
①若
b
a
f(x)dx>0,則f(x)>0;
0
|sinx|dx=4;
③若函數(shù)f(x)為奇函數(shù),則
a
-a
f(x)dx=0;
④函數(shù)f(x)的原函數(shù)為F(x),且F(x)是以T為周期的函數(shù),則
a
0
f(x)dx=
a+T
0
f(x)dx.其中正確命題是
 
(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知隨機(jī)變量X服從正態(tài)分布N(0,σ2),若P(x>2)=a(0<a<1),則P(-2≤x≤2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A∪B={-2,0,1},則p=
 
,q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在東經(jīng)120°圈上有甲、乙兩地,它們分別在北緯15°與北緯75°圈上,地球半徑為R,則甲、乙兩地的球面距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和Sn,若a1+a5+a9=18,則S9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐P-ABCD的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是
6
,且它的五個(gè)頂點(diǎn)都在同一個(gè)球面上,則此球的半徑是(  )
A、1
B、2
C、
3
2
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案