精英家教網 > 高中數學 > 題目詳情

已知函數.

(Ⅰ)當時,求曲線在點處的切線方程;

 (Ⅱ)當時,討論的單調性.

 

【答案】

(Ⅰ) 當時, 

     所以  ,……………………1分

     因此,.

     即曲線1.…………2分

     又 …………………………………………3分

     所以曲線

         ……………………………………4分

(Ⅱ)因為,

    所以  ,,…………5分

    令

1、當時,,,

所以,當x∈(0,1)時,,此時,函數單調遞減

   當時,,此時,,函數單調遞增.……6分

2、當時,由,即,解得,  ……7分

1 當時,,恒成立,此時,函數上單調遞減;…………………………………………………………………………8分

2 當時,

時,,此時,函數單調遞減

時,,此時,函數單調遞增

時,,此時,函數單調遞減…………10分

3當時,由于

時,,此時,函數單調遞減;

時,,此時,函數單調遞增.…………11分

綜上所述:

時,函數上單調遞減;函數上單調遞增

時,函數上單調遞減

時,函數上單調遞減;

函數 上單調遞增;

 函數上單調遞減.

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數(1)當a=4,,求函數f(x)的最大值;(2)若x≥a , 試求f(x)+3 >0 的解集;(3)當時,f(x)≤2x – 2 恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年山東省濟寧市泗水一中高三(上)期末數學模擬試卷(理科)(解析版) 題型:選擇題

已知函數,當x∈[1,3]時,f(x)=lnx,若在區(qū)間內,函數g(x)=f(x)-ax,有三個不同的零點,則實數a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省晉江市四校高三第二次聯(lián)合考試文科數學試卷 題型:選擇題

已知函數,則當方程有三個不同實根時,實數的取值范圍                 是  (     )

A.      B.      C.            D.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012年山東省濟寧市高二上學期期中考試文科數學 題型:解答題

(本小題滿分12分)

    已知函數f()=,當∈(-2,6)時,其值為正,而當∈(-∞,-2)∪(6,+∞)時,其值為負

(I)        求實數的值及函數f()的解析式

(II)設F()= -f()+4+12,問取何值時,方程F()=0有正根?

 

查看答案和解析>>

科目:高中數學 來源:2010年重慶市高一上學期期中考試數學試題 題型:解答題

(本小題滿分10分)

已知函數,當點 (x,y) 是函數y = f (x) 圖象上的點時,點是函數y = g(x) 圖象上的點.

(1)    寫出函數y = g (x) 的表達式;

(2)    當g(x)-f (x)0時,求x的取值范圍;

(3)    當x在 (2) 所給范圍內取值時,求的最大值.

 

查看答案和解析>>

同步練習冊答案