已知函數(shù)
(1)設(shè),且,求的值;
(2)在△ABC中,AB=1,,且△ABC的面積為,求sinA+sinB的值.

(1),(2)

解析試題分析:(1)研究三角函數(shù)性質(zhì),首先將三角函數(shù)化為基本三角函數(shù)形式,即:==.再由于是,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/86/a/rl9js1.png" style="vertical-align:middle;" />,所以.(2)解三角形,基本方法利用正余弦定理進(jìn)行邊角轉(zhuǎn)化. 因?yàn)椤鰽BC的面積為,所以,于是.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/5/1k5az2.png" style="vertical-align:middle;" />,由(1)知.由余弦定理得,所以.可得由正弦定理得,所以.   
【解】(1)==
,得,              
于是,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/86/a/rl9js1.png" style="vertical-align:middle;" />,所以.    
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/5/1k5az2.png" style="vertical-align:middle;" />,由(1)知.                           
因?yàn)椤鰽BC的面積為,所以,于是.      ①
在△ABC中,設(shè)內(nèi)角A、B的對(duì)邊分別是a,b.
由余弦定理得,所以.    ②
由①②可得 于是.             
由正弦定理得
所以.                             
考點(diǎn):三角函數(shù)性質(zhì),正余弦定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,某建筑工地準(zhǔn)備建造一間兩面靠墻的三角形露天倉(cāng)庫(kù)堆放材料,已知已有兩面墻、的夾角為(即),現(xiàn)有可供建造第三面圍墻的材料米(兩面墻的長(zhǎng)均大于米),為了使得倉(cāng)庫(kù)的面積盡可能大,記,問(wèn)當(dāng)為多少時(shí),所建造的三角形露天倉(cāng)庫(kù)的面積最大,并求出最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 的部分圖象,如圖所示.

(1)求函數(shù)解析式;
(2)若方程有兩個(gè)不同的實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(l)求函數(shù)的最小正周期;
(2)當(dāng)時(shí),求函數(shù)f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象過(guò)點(diǎn).
(1)求實(shí)數(shù)的值; 
(2)求函數(shù)的最小正周期及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))的最小正周期為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖像向左平移個(gè)單位,再向上平移個(gè)單位,得到函數(shù)的圖像.求在區(qū)間上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的最小正周期.
(2)若將的圖象向右平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量, 設(shè)函數(shù).
(1)求f (x)的最小正周期.
(2)求f (x)在上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案