如圖,已知雙曲線C:(a>0,b>0)的離心率e=,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且,求||的最小值.

【答案】分析:(1)設(shè)出焦點(diǎn)坐標(biāo),利用=-1,結(jié)合離心率,求出a,c,b,即可求雙曲線C的方程;
(2)設(shè)出直線l的方程,求出直線交雙曲線C的漸近線l1、l2于P1、P2,結(jié)合,通過P在雙曲線上,通過弦長(zhǎng)公式求||的最小值.
解答:解:(1)設(shè)F1(0,c),F(xiàn)2(0,c)則M(),由=-1,
=a2-c2=-1;
,

所以雙曲線C的方程為:y2-x2=1.…(6分)
(2)設(shè)直線l的方程為y=kx+b,交雙曲線C的漸近線l1、l2于P1),P2);
可得P
因?yàn)镻在雙曲線上,所以,
所以8b2=9(1-k2),
聯(lián)立得即(k2-1)x2+2kbx+b2-1=0…(10分)
==
當(dāng)且僅當(dāng)k=0時(shí)取等號(hào).
點(diǎn)評(píng):此題是難題.考查雙曲線的定義和簡(jiǎn)單的幾何性質(zhì),以及直線和橢圓相交中的有關(guān)中點(diǎn)弦的問題,綜合性強(qiáng),特別是問題(2)的設(shè)問形式,增加了題目的難度,注意直線與圓錐曲線相交弦長(zhǎng)的求法.體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知雙曲線C:
y2
a2
-
x2
b2
=1
(a>0,b>0)的離心率e=
2
,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且
MF1
MF2
=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且
P1P
=2
PP2
,求|
PQ
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右準(zhǔn)線l1與一條漸近線l2交于點(diǎn)M,F(xiàn)是雙曲線C的右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(I)求證:
OM
MF
;
(II)若|
MF
|=1且雙曲線C的離心率e=
6
2
,求雙曲線C的方程;
(III)在(II)的條件下,直線l3過點(diǎn)A(0,1)與雙曲線C右支交于不同的兩點(diǎn)P、Q且P在A、Q之間,滿足
AP
AQ
,試判斷λ的范圍,并用代數(shù)方法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知雙曲線C:數(shù)學(xué)公式(a>0,b>0)的離心率e=數(shù)學(xué)公式,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且數(shù)學(xué)公式=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且數(shù)學(xué)公式,求|數(shù)學(xué)公式|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省延邊五中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,已知雙曲線C:(a>0,b>0)的離心率e=,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且,求||的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案