橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.
(1)(2)-1(3)見解析
【解析】
試題分析:
(1)根據(jù)題意設出橢圓的方程,題目已知離心率即可得到的值,根據(jù)橢圓的幾何性質,短軸端點與兩焦點構成的三角形以焦距為底邊長,以短半軸長為高,即該三角形的面積為,再根據(jù)之間的關系即可求出的值,得到橢圓的標準方程.拋物線的交點在x軸的正半軸,故拋物線的焦點為橢圓的右頂點,即可求出得到拋物線的方程.
(2)討論直線AB的斜率,當斜率不存在時與y軸沒有交點,所以不符合題意,則斜率存在,設直線AB的斜率為k得到直線AB的方程,聯(lián)立直線與拋物線的方程得到AB兩點橫坐標的韋達定理,把向量的橫坐標帶入向量的坐標表示得到之間的關系為反解,帶入,利用(韋達定理)帶入即可得到為定值.
(3)設出P,Q兩點的坐標,則可以得到的坐標,帶入條件得到P,Q橫縱坐標之間的關系,因為P,Q在橢圓上,則滿足橢圓的方程,這兩個條件得到的三個式子相加配方即可證明點S在橢圓上,即滿足橢圓的方程.
試題解析:
(1)由題意,橢圓的方程為,又
解得,∴橢圓的方程是.由此可知拋物線的焦點為,得,所以拋物線的方程為. 4分
(2)是定值,且定值為,由題意知,
直線的斜率存在且不為,設直線的方程為,
則聯(lián)立方程組
消去得:且,由,得整理得可得
. 9分
(3)設則
由得 ①
將點坐標帶入橢圓方程得, ② ③
由①+②+③得
所以點滿足橢圓的方程,所以點在橢圓上. 13分
考點:拋物線橢圓根與系數(shù)的關系
科目:高中數(shù)學 來源:2013-2014學年山東省濟南市高三3月考模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
在△ABC中,若,則cosB的值為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三5月統(tǒng)一質量檢測考試理科數(shù)學試卷(解析版) 題型:選擇題
已知雙曲線的漸近線方程為,則以它的頂點為焦點,焦點為頂點的橢圓的離心率等于( )
A. B. C. D.1
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三5月統(tǒng)一質量檢測考試文科數(shù)學試卷(解析版) 題型:填空題
已知直線過點,則的最小值為_________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三5月統(tǒng)一質量檢測考試文科數(shù)學試卷(解析版) 題型:選擇題
設,則“”是“”的( )
A.充分而不必要條件 B.必要而不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三3月第一次模擬考試理科數(shù)學試卷(解析版) 題型:填空題
若關于x的不等式(組)恒成立,則所有這樣的解x構成的集合是____________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三3月第一次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
現(xiàn)有四個函數(shù)①②,③,④的部分圖象如下,但順序被打亂,則按照圖象從左到右的順序,對應的函數(shù)序號正確的一組是( )
A.①④②③ B.①④③② C.④①②③ D.③④②①
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省日照市高三3月第一次模擬考試文科數(shù)學試卷(解析版) 題型:填空題
已知雙曲線的一個焦點坐標為,則其漸近線方程為_______.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年山東省德州市高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:選擇題
若復數(shù)z滿足(z+2)i=5+5i(i為虛數(shù)單位),則z為
A.3+5i B.-3-5i C.-3+5i D.3-5i
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com