【題目】在直角坐標(biāo)平面中,已知點(diǎn),,,…,,其中是正整數(shù),對平面上任一點(diǎn),記為關(guān)于點(diǎn)的對稱點(diǎn),為關(guān)于點(diǎn)的對稱點(diǎn),…,為關(guān)于點(diǎn)的對稱點(diǎn).
(1)求向量的坐標(biāo);
(2)當(dāng)點(diǎn)在曲線上移動時(shí),點(diǎn)的軌跡是函數(shù)的圖像,其中是以3為周期的周期函數(shù),且當(dāng)時(shí),.求以曲線為圖像的函數(shù)在上的解析式;
(3)對任意偶數(shù),用表示向量的坐標(biāo).
【答案】(1)(2)(3)
【解析】
(1)先設(shè)點(diǎn),由題意求出,進(jìn)而得到,從而可求出向量;
(2)先由題意,得到是由曲線按向量平移得到的;根據(jù)圖像變換,以及函數(shù)周期,即可得出結(jié)果;
(3)先由為關(guān)于點(diǎn)的對稱點(diǎn),為關(guān)于點(diǎn)的對稱點(diǎn),得到,再由向量的運(yùn)算法則,結(jié)合向量的坐標(biāo)表示,以及等比數(shù)列的求和公式,即可求出結(jié)果.
(1)設(shè)點(diǎn),因?yàn)?/span>為關(guān)于點(diǎn)的對稱點(diǎn),所以,
又為關(guān)于點(diǎn)的對稱點(diǎn),
所以,即,
因此;
(2)由(1),
因?yàn)辄c(diǎn)在曲線上移動時(shí),點(diǎn)的軌跡是函數(shù)的圖像,
所以的圖像由曲線向右平移個(gè)單位,再向上平移個(gè)單位得到,
因此,設(shè)曲線是函數(shù)的圖像,因?yàn)?/span>是以3為周期的周期函數(shù),
所以也是以為周期的周期函數(shù),
當(dāng)時(shí),,
所以當(dāng)時(shí),;
于是,當(dāng)時(shí),;
(3)由題意,為關(guān)于點(diǎn)的對稱點(diǎn),為關(guān)于點(diǎn)的對稱點(diǎn).
所以在中,為的中點(diǎn),為的中點(diǎn),
所以,
因此,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的平面直角坐標(biāo)方程和直線的普通方程:
(2)若成等比數(shù)列,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:=1(a>b>0)的左焦點(diǎn)分別為F1(-c,0),F2(c,0),過F2作垂直于x軸的直線l交橢圓C于A、B兩點(diǎn),滿足|AF2|=c.
(1)橢圓C的離心率;
(2)M、N是橢圓C短軸的兩個(gè)端點(diǎn),設(shè)點(diǎn)P是橢圓C上一點(diǎn)(異于橢圓C的頂點(diǎn)),直線MP、NP分別和x軸相交于R、Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OR||OQ|=4,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(I)證明:平面平面;
(Ⅱ)若點(diǎn)在棱上運(yùn)動,當(dāng)直線與平面所成的角最大時(shí),求二面角的余弦值.
圖一
圖二
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國古畫,現(xiàn)收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結(jié)實(shí)累累,小孩群來攀扯,枝椏不;蝿,粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動作,四人每人模仿一個(gè)動作.若他們采用抽簽的方式來決定誰模仿哪個(gè)動作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)的直線l與橢圓C交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】混凝土具有原材料豐富、抗壓強(qiáng)度高、耐久性好等特點(diǎn),是目前使用量最大的土木建筑材料抗壓強(qiáng)度是混凝土質(zhì)量控制的重要技術(shù)參數(shù),也是實(shí)際工程對混凝土要求的基本指標(biāo).為了解某型號某批次混凝土的抗壓強(qiáng)度(單位: )隨齡期(單位:天)的發(fā)展規(guī)律,質(zhì)檢部門在標(biāo)準(zhǔn)試驗(yàn)條件下記錄了10組混凝土試件在齡期分別為2,3,4,5,7,9,12,14,17,21時(shí)的抗壓強(qiáng)度的值,并對數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中,.
(1)根據(jù)散點(diǎn)圖判斷與哪一個(gè)適宜作為抗壓強(qiáng)度關(guān)于齡期的回歸方程類型?選擇其中的一個(gè)模型,并根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(2)工程中常把齡期為28天的混凝土試件的抗壓強(qiáng)度視作混凝土抗壓強(qiáng)度標(biāo)準(zhǔn)值.已知該型號混凝土設(shè)置的最低抗壓強(qiáng)度標(biāo)準(zhǔn)值為.
(ⅰ)試預(yù)測該批次混凝土是否達(dá)標(biāo)?
(ⅱ)由于抗壓強(qiáng)度標(biāo)準(zhǔn)值需要較長時(shí)間才能評定,早期預(yù)測在工程質(zhì)量控制中具有重要的意義.經(jīng)驗(yàn)表明,該型號混凝土第7天的抗壓強(qiáng)度,與第28天的抗壓強(qiáng)度具有線性相關(guān)關(guān)系,試估計(jì)在早期質(zhì)量控制中,齡期為7天的試件需達(dá)到的抗壓強(qiáng)度.
附: ,,參考數(shù)據(jù): ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程,
(1)求直線和圓的直角坐標(biāo)方程;
(3)設(shè)圓與直線交于點(diǎn)、,若點(diǎn)的坐標(biāo)為,求,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100個(gè)零件作為樣本,測量其直徑后,整理得到如表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評判(表示相應(yīng)事件的頻率):①;②;③.評判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備性能等級為甲;僅滿足其中兩個(gè),則設(shè)備性能等級為乙;若僅滿足其中一個(gè),則設(shè)備性能等級為丙;若全部不滿足,則設(shè)備性能等級為。嚺袛嘣O(shè)備的性能等級.
(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.
(i)從設(shè)備的生產(chǎn)流水線上任意抽取2個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;
(ii)從樣本中任意抽取2個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com