【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形, ,AB⊥AD,AB∥CD,點(diǎn)M是PC的中點(diǎn). (I)求證:MB∥平面PAD;
(II)求二面角P﹣BC﹣D的余弦值.

【答案】證明:(Ⅰ)取PD中點(diǎn)H,連結(jié)MH,AH. 因?yàn)?M為 中點(diǎn),所以
因?yàn)? .所以AB∥HM且AB=HM.
所以四邊形ABMH為平行四邊形,所以 BM∥AH.
因?yàn)?BM平面PAD,AH平面PAD,
所以BM∥平面PAD.
解:(Ⅱ) 取AD中點(diǎn)O,連結(jié)PO.
因?yàn)?PA=PD,所以PO⊥AD.
因?yàn)?平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO平面PAD,
所以PO⊥平面ABCD.取BC中點(diǎn)K,連結(jié)OK,則OK∥AB.
以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,
設(shè)AB=2,則
平面BCD的法向量 ,
設(shè)平面PBC的法向量 ,
,得 令x=1,則

由圖可知,二面角P﹣BC﹣D是銳二面角,
所以二面角P﹣BC﹣D的余弦值為

【解析】(Ⅰ)取PD中點(diǎn)H,連結(jié)MH,AH.推導(dǎo)出四邊形ABMH為平行四邊形,從而BM∥AH,由此能證明BM∥平面PAD.(Ⅱ) 取AD中點(diǎn)O,連結(jié)PO.以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法能求出二面角P﹣BC﹣D的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB則下列結(jié)論正確的是(
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直線BC∥平面PAE
D.直線PD與平面ABC所成的角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式(m﹣1)x2+(m﹣1)x+2>0
(1)若m=0,求該不等式的解集
(2)若該不等式的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩煤礦每年的產(chǎn)量分別為200萬(wàn)噸和260萬(wàn)噸,需經(jīng)過(guò)東車站和西車站兩個(gè)車站運(yùn)往外地.東車站每年最多能運(yùn)280萬(wàn)噸煤,西車站毎年最多能運(yùn)360萬(wàn)噸煤,甲煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價(jià)格分別為1元/t和1.5元/t,乙煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價(jià)格分別為0.8元/t和1.6元/t.煤礦應(yīng)怎樣編制調(diào)運(yùn)方案,能使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正項(xiàng)等差數(shù)列{an}中a1和a4是方程x2﹣10x+16=0的兩個(gè)根,若數(shù)列{log2an}的前5項(xiàng)和為S5且S5∈[n,n+1],n∈Z,則n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題: ①“若a2<b2 , 則a<b”的否命題;
②“全等三角形面積相等”的逆命題;
③“若a>1,則ax2﹣2ax+a+3>0的解集為R”的逆否命題;
④“若 x(x≠0)為有理數(shù),則x為無(wú)理數(shù)”的逆否命題.
其中正確的命題是(
A.③④
B.①③
C.①②
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ai

29

28

30

19

31

28

30

28

32

31

30

31

29

29

31

32

40

30

32

30


(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中 是這20名工人年齡的平均數(shù)),求輸出的S值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,1+ =
(1)求A的大;
(2)若△ABC為銳角三角形,求函數(shù)y=2sin2B﹣2cosBcosC的取值范圍;
(3)現(xiàn)在給出下列三個(gè)條件:①a=1;②2c﹣( +1)b=0;③B=45°,試從中再選擇兩個(gè)條件,以確定△ABC,求出所確定的△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某位籃球運(yùn)動(dòng)員8場(chǎng)比賽得分的莖葉圖,其中一個(gè)數(shù)據(jù)染上污漬用x代替,則這位運(yùn)動(dòng)員這8場(chǎng)比賽的得分平均數(shù)不小于得分中位數(shù)的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案