設函數(shù)f(x)在區(qū)間(-a,a)(a>0)內(nèi)為奇函數(shù)且可導,證明:f′(x)是(-a,a)內(nèi)的偶函數(shù).

證明:對任意
由于f(x)為奇函數(shù),∴f[-(x-△x)]=-f(x-△x),f(-x)=-f(x),
于是,
因此f′(-x)=f′(x)即f′(x)是(-a,a)內(nèi)的偶函數(shù).
分析:證明f′(x)是(-a,a)內(nèi)的偶函數(shù)即證f′(-x)=f′(x),而函數(shù)f(x)沒有解析式,故想到運用導數(shù)的定義進行證明.
點評:本題考查導數(shù)的定義以及函數(shù)奇偶性的判斷.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)在區(qū)間(-a,a)(a>0)內(nèi)為奇函數(shù)且可導,證明:f′(x)是(-a,a)內(nèi)的偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0<x1<…<xi-1<xi…<xn=b,把區(qū)間[a,b]等分成n個小區(qū)間,在每個小區(qū)間[xi-1,xi]上任取一點ξi(i=1,2,…,n),作和式Sn=
n
i=1
f(ξi)△x
(其中△x為小區(qū)間的長度),那么Sn的大小( 。
A、與f(x)和區(qū)間[a,b]有關,與分點的個數(shù)n和ξi的取法無關
B、與f(x)和區(qū)間[a,b]和分點的個數(shù)n有關,與ξi的取法無關
C、與f(x)和區(qū)間[a,b]和分點的個數(shù)n,ξi的取法都有關
D、與f(x)和區(qū)間[a,b]和ξi取法有關,與分點的個數(shù)n無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+x+1,a∈R.設函數(shù)f(x)在區(qū)間(-
2
3
,-
1
3
)內(nèi)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•聊城一模)已知函數(shù)f(x)=sin(2ωx-
π
6
)-4sin2ωx+a,(ω>0)
,其圖象的相鄰兩個最高點之間的距離為π,
(1) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2) 設函數(shù)f(x)在區(qū)間[0,
π
2
]
上的最小值為-
3
2
,求函數(shù)f(x),(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•嘉定區(qū)一模)已知函數(shù)f(x)=|x|•(x-a).
(1)判斷f(x)的奇偶性;
(2)設函數(shù)f(x)在區(qū)間[0,2]上的最小值為m(a),求m(a)的表達式;
(3)若a=4,證明:方程f(x)+
4x
=0有兩個不同的正數(shù)解.

查看答案和解析>>

同步練習冊答案