【題目】已知函數(shù)

)若,求的值.

)在中,角,,的對邊分別是,,,且滿足,求的取值范圍.

【答案】1;(2.

【解析】

試題(1)先進(jìn)行三角恒等變形,使化為的形式,求出的值,再利用

的關(guān)系進(jìn)行求值;(2)先利用余弦定理求出角A,化簡,利用B的范圍進(jìn)行求解.

試題解析: (1fx)=sincoscos2

sincossin.

fx)=1,可得sin.

coscos[π-(x]=-cosx

2sin2)-1=-.

2)由acos Ccb,得cb

b2c2a2bc,所以cos A.

因為A∈0,π),所以A,BC,

所以0<B<,所以<<,

所以fB)=sin

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有72,108120人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取25人調(diào)查專項附加扣除的享受情況.

項目

員工

A

B

C

D

E

F

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養(yǎng)老人

×

×

×

1)應(yīng)從老、中、青員工中分別抽取多少人?

2)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為A,B,C,D,E,F.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.

①試用所給字母列舉出所有可能的抽取結(jié)果;

②設(shè)M為事件抽取的2人享受的專項附加扣除至少有一項相同,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1、F2,離心率為,且經(jīng)過點.

(1)求橢圓C的方程;

(2)動直線與橢圓C相交于點M,N,橢圓C的左右頂點為,直線相交于點,證明點在定直線上,并求出定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定的正整數(shù),若數(shù)列滿足對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.

(1)證明:等差數(shù)列是“數(shù)列”;

(2)若數(shù)列既是“數(shù)列”,又是“數(shù)列”,證明: 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運動時間超過4小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

() 證明:當(dāng),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱, 的中點.

1證明 平面;

2, ,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]已知直線l過原點且傾斜角為, ,以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C 的極坐標(biāo)方程為psin =4cos.

(I)寫出直線l的極坐標(biāo)方程和曲線C 的直角坐標(biāo)方程;

()已知直線l過原點且與直線l相互垂直,lC=-M,lC=N,其中M,N不與原點重合,求OMN 面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案