【題目】設(shè)橢圓,定義橢圓C相關(guān)圓E:.若拋物線的焦點(diǎn)與橢圓C的右焦點(diǎn)重合,且橢圓C的短軸長(zhǎng)與焦距相等.

1)求橢圓C及其相關(guān)圓E的方程;

2)過相關(guān)圓E上任意一點(diǎn)P作其切線l,若l 與橢圓交于A,B兩點(diǎn),求證:為定值(為坐標(biāo)原點(diǎn));

3)在(2)的條件下,求面積的取值范圍.

【答案】1;(2)證明見解析;(3.

【解析】

1)由題設(shè)知,又,從而可得,得橢圓方程,及相關(guān)圓方程;

2)對(duì)直線斜率進(jìn)行討論,斜率不存在時(shí),直接寫出直線方程,求出坐標(biāo),得,

斜率存在時(shí),設(shè)直線方程為,與橢圓方程聯(lián)立方程組,消元后得關(guān)于的二次方程,有韋達(dá)定理得,由直線與圓相切得關(guān)系,計(jì)算也可得,定值.

3)由于是“相關(guān)圓”半徑,所以,結(jié)合韋達(dá)定理求得,并得到其范圍,從而得面積的范圍.

1)拋物線的焦點(diǎn)是,與橢圓的一個(gè)焦點(diǎn)重合,∴,又,所以,

橢圓方程為,“相關(guān)圓”的方程為

2)當(dāng)直線斜率不存在時(shí),不妨設(shè)其方程為,則,可得

當(dāng)直線斜率存在時(shí),設(shè)其方程為,設(shè),由

,即

由韋達(dá)定理得,

因?yàn)橹本與圓相切,所以,整理得,

所以,所以,,為定值.

3)由于,因此求面積的取值范圍只要求弦長(zhǎng)的取值范圍.

當(dāng)直線斜率不存在時(shí),,

當(dāng)直線斜率存在時(shí),

,

時(shí),0,

時(shí),,

,即,當(dāng)且僅當(dāng)時(shí),

所以的取值范圍是,

面積的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),過原點(diǎn)的兩條直線分別與交于點(diǎn)、,得到平行四邊形.

1)當(dāng)為正方形時(shí),求該正方形的面積.

2)若直線關(guān)于軸對(duì)稱,上任意一點(diǎn)的距離分別為,當(dāng)為定值時(shí),求此時(shí)直線的斜率及該定值.

3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,分別是橢圓的左右焦點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),且的周長(zhǎng)為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得是以為底邊的等腰三角形若存在,求點(diǎn)橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若為單調(diào)函數(shù),求a的取值范圍;

2)若函數(shù)僅一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過點(diǎn)和點(diǎn).

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個(gè)單位后,得到函數(shù)的圖象;已知點(diǎn),若函數(shù)的圖象上存在點(diǎn),使得,求函數(shù)圖象的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,線段都是圓的弦,且垂直且相交于坐標(biāo)原點(diǎn),如圖所示,設(shè)△的面積為,設(shè)△的面積為.

1)設(shè)點(diǎn)的橫坐標(biāo)為,用表示

2)求證:為定值;

3)用、、、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時(shí)直線的方程;若沒有最小值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為原點(diǎn)的拋物線C的焦點(diǎn)與橢圓的上焦點(diǎn)重合,且過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若拋物線上不同兩點(diǎn)AB作拋物線的切線,兩切線的斜率,若記AB的中點(diǎn)的橫坐標(biāo)為m,AB的弦長(zhǎng),并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為,且過坐標(biāo)原點(diǎn)O,數(shù)列的前n項(xiàng)和為,點(diǎn)()在二次函數(shù)的圖象上.

(1)求數(shù)列的表達(dá)式;

(2)設(shè)(),數(shù)列的前n項(xiàng)和為,若對(duì)恒成立,求實(shí)數(shù)m的取值范圍;

(3)在數(shù)列中是否存在這樣的一些項(xiàng),,,,…,…(),這些項(xiàng)能夠依次構(gòu)成以為首項(xiàng),q(,)為公比的等比數(shù)列?若存在,寫出關(guān)于k的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案