已知是數(shù)列項(xiàng)和,且,對(duì),總有,則     。

試題分析:當(dāng)時(shí),,(負(fù)舍),當(dāng)時(shí),,所以,由,所以,(負(fù)舍).由此歸納得:猜想.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240552260971032.png" style="vertical-align:middle;" />,因此,所以由數(shù)學(xué)歸納法知猜想成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,且對(duì)任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足,
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)項(xiàng)數(shù)均為)的數(shù)列、項(xiàng)的和分別為、、.已知,且集合=.
(1)已知,求數(shù)列的通項(xiàng)公式;
(2)若,求的值,并寫出兩對(duì)符合題意的數(shù)列、;
(3)對(duì)于固定的,求證:符合條件的數(shù)列對(duì)()有偶數(shù)對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足:a2•a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
2Sn
2n-1
,f(n)=
bn
(n+25)•bn+1
(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

項(xiàng)數(shù)為n的數(shù)列a1,a2,a3,…,an的前k項(xiàng)和為Sk(k=1,2,3,…,n),定義
S1+S2+…+Sn
n
為該項(xiàng)數(shù)列的“凱森和”,如果項(xiàng)數(shù)為99項(xiàng)的數(shù)列a1,a2,a3,…,a99的“凱森和”為1000,那么項(xiàng)數(shù)為100的數(shù)列100,a1,a2,a3,…,a99的“凱森和”為(  )
A.991B.1001C.1090D.1100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列{an}中,前n項(xiàng)和為Sn,且Sn=
n(n+1)
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
an
2n
,數(shù)列{bn}前n項(xiàng)和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(n)=n2sin
2
,且an=f(n)+f(n+1),則a1+a2+a3+…+a2014=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案