等比數(shù)列{an}的前n項(xiàng)的和為Sn=3n-1-r,則r=
 
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列{an}是等比數(shù)列可得a1=S1=1-r適合an=Sn-Sn-1的通項(xiàng)公式,從而求出所求.
解答: 解:由Sn=3n-1-r
n≥2,an=Sn-Sn-1=3n-1-r-3n-2+r=2•3n-2,
由數(shù)列{an}是等比數(shù)列可得a1=S1=1-r適合上式
∴1-r=
2
3

∴r=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題主要考查了由數(shù)列的和求數(shù)列的項(xiàng),解題的關(guān)鍵是靈活利用等比數(shù)列的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>0,b>0),短軸長為2
3
,離心率為
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx+m(|k|≤
1
2
)與橢圓C相交于A、B兩點(diǎn),以線段OA、OB為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓C上,O為坐標(biāo)原點(diǎn),求|OP|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(1,0),直線l:x=-1,動(dòng)點(diǎn)P到點(diǎn)F的距離與到直線l的距離相等.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)直線y=
3
x+b與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小明打算從A組和B組兩組花樣滑冰動(dòng)作中選擇一組參加比賽.已知小明選擇A組動(dòng)作的概率是選擇B組動(dòng)作的概率的3倍,若小明選擇A組動(dòng)作并正常發(fā)揮可獲得10分,沒有正常發(fā)揮只能獲得6分;若小明選擇B組動(dòng)作則一定能正常發(fā)揮并獲得8分.據(jù)平時(shí)訓(xùn)練成績統(tǒng)計(jì),小明能正常發(fā)揮A組動(dòng)作的概率是0.8.
(Ⅰ)求小明選擇A組動(dòng)作的概率;
(Ⅱ)設(shè)ξ表示小明比賽時(shí)獲得的分?jǐn)?shù),求ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=cosx+
x2
2
-1.
(Ⅰ)求證:當(dāng)x≥0時(shí),f(x)≥0;
(Ⅱ)若不等式eax≥sinx-cosx+2對(duì)任意的x≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x),g(x)都是單調(diào)函數(shù),有如下四個(gè)命題:
①若f(x)單調(diào)遞增,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞增;
②若f(x)單調(diào)遞增,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞增;
③若f(x)單調(diào)遞減,g(x)單調(diào)遞增,則f(x)-g(x)單調(diào)遞減;
④若f(x)單調(diào)遞減,g(x)單調(diào)遞減,則f(x)-g(x)單調(diào)遞減;
其中,正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x2-y2-2x+2y≥0
1≤x≤4
,則x+2y的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足不等式x2-x<0的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦點(diǎn)F1(-c,0)、F2(c,0)(c>0),過F2的直線l交雙曲線于A,D兩點(diǎn),交漸近線于B,C兩點(diǎn).設(shè)
F1B
+
F1C
=
m
F1A
+
F1D
=
n
,則下列各式成立的是(  )
A、|
m
|>|
n
|
B、|
m
|<|
n
|
C、|
m
-
n
|=0
D、|
m
-
n
|>0

查看答案和解析>>

同步練習(xí)冊(cè)答案