【題目】已知且
(1)求函數(shù)的定義域及其零點(diǎn);
(2)若關(guān)于的方程在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)的取值范圍.
【答案】(1)定義域?yàn)?/span>,零點(diǎn)為0;(2)分類討論,答案見(jiàn)解析.
【解析】
(1)求定義域要求真數(shù)大于0,列不等式組可得結(jié)果,求零點(diǎn)令函數(shù)值為0,解方程可在定義域內(nèi)得函數(shù)的零點(diǎn);
(2)利用函數(shù)零點(diǎn)(方程有根)求參數(shù)范圍問(wèn)題,可構(gòu)造新函數(shù),轉(zhuǎn)化為兩個(gè)函數(shù)有交點(diǎn)問(wèn)題,也可利用函數(shù)的單調(diào)性,確定參數(shù)的取值范圍.
解:(1)由得,
故的定義域?yàn)?/span>,
由,即,
得,
得,
解得或,
由于,故的零點(diǎn)為0;
(2)方法一:
在區(qū)間[0,1)內(nèi)有解,即,有解,
令,,,在(0,1]為減函數(shù),
則,即,
當(dāng)時(shí),,
時(shí),;
方法二:
由方程在區(qū)間[0,1)內(nèi)有解,即與在有交點(diǎn),
.令,,,
在(0,1]為減函數(shù),,,
當(dāng)時(shí),,即,
∴,
當(dāng)時(shí),,即,
∴;
方法三:
,
當(dāng)時(shí),在[0,1)上為增函數(shù),此時(shí),故此時(shí)
當(dāng)時(shí),在[0,1)上為減函數(shù),此時(shí),故此時(shí),
綜上時(shí),,時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga()(0<a<1,b>0)為奇函數(shù),當(dāng)x∈(﹣1,a]時(shí),函數(shù)y=f(x)的值域是(﹣∞,1].
(1)確定b的值;
(2)證明函數(shù)y=f(x)在定義域上單調(diào)遞增,并求a的值;
(3)若對(duì)于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“有黑掃黑、無(wú)黑除惡、無(wú)惡治亂”,維護(hù)社會(huì)穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動(dòng)投案,某市公安機(jī)關(guān)對(duì)某月連續(xù)7天主動(dòng)投案的人員進(jìn)行了統(tǒng)計(jì),表示第天主動(dòng)投案的人數(shù),得到統(tǒng)計(jì)表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若與具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)判定變量與之間是正相關(guān)還是負(fù)相關(guān).(寫(xiě)出正確答案,不用說(shuō)明理由)
(3)預(yù)測(cè)第八天的主動(dòng)投案的人數(shù)(按四舍五入取到整數(shù)).
參考公式:, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1到7的7個(gè)數(shù)字中取兩個(gè)偶數(shù)和三個(gè)奇數(shù)組成沒(méi)有重復(fù)數(shù)字的五位數(shù).
試問(wèn):(1)能組成多少個(gè)不同的五位偶數(shù)?
(2)五位數(shù)中,兩個(gè)偶數(shù)排在一起的有幾個(gè)?
(3)兩個(gè)偶數(shù)不相鄰且三個(gè)奇數(shù)也不相鄰的五位數(shù)有幾個(gè)?(所有結(jié)果均用數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線的斜率為,直線與橢圓交于兩點(diǎn).點(diǎn)為橢圓上一點(diǎn),求的面積的最大值及此時(shí)直線的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.長(zhǎng)沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買(mǎi)人數(shù)(單位:萬(wàn)人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買(mǎi)該流量包的人數(shù)能否超過(guò)20 萬(wàn)人.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形的勃?jiǎng)诳ǖ曼c(diǎn)是以法國(guó)軍官亨利·勃?jiǎng)诳ǖ拢?/span>Henri.Brocard)命名的,他在1875年曾描述過(guò)這一事實(shí),即:對(duì)任何一個(gè)三角形都存在唯一的角,即勃?jiǎng)诳ǖ陆牵沟脠D中連接三個(gè)頂點(diǎn)的線相交于勃?jiǎng)诳ǖ曼c(diǎn)Q,如圖所示.
(1)研究發(fā)現(xiàn):等腰直角三角形中,若是斜邊的等腰直角三角形,求線段的長(zhǎng)度;
(2)若中,,,,求的值;
(3)若中,若線段,,的長(zhǎng)度是1為首項(xiàng),公比為q()的等比數(shù)列,當(dāng)時(shí),求公比q的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com