二進制數(shù)1101(2)化為五進制數(shù)為
 
考點:進位制
專題:計算題
分析:先將二進制化為十進制,然后利用十進制化為其它進制的“除k取余法”方法即可求出所求.
解答: 解:根據(jù)二進制和十進制之間的關(guān)系得:
1101(2)=1×20+0×21+1×22+1×23=1+4+8=13,
再利用“除5取余法”可得:
13÷5=2…3,
2÷5=0…2
∴化成5進制是23(5)
故答案為:23(5)
點評:本題以進位制的轉(zhuǎn)換為背景考查算法的多樣性,解題的關(guān)鍵是熟練掌握進位制的轉(zhuǎn)化規(guī)則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖框圖,對大于2的整數(shù)N,輸出的數(shù)列的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c∈R+,且a2+b2+c2=1,求證:-
1
2
≤ab+bc+ca≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)是同一函數(shù)的是( �。�
A、y=
x+1
x-1
,  y=
1
1-x
-2
B、y=
x-1
x+1
,  y=
x2-1
C、y=x,  y=
3x3
D、y=|x|,  y=(
x
)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組兩個集合M和N,表示同一集合的是( �。�
A、M={π},N={3.14159}
B、M={2,3},N={(2,3)}
C、M={(x,y)|x+y=1},N={y|x+y=1}
D、M={x|x2+1=0},N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1+a4+a7=2π,則tan(a3+a5)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-1
x+3
的定義域為(  )
A、[1,3)∪(3,+∞)
B、(1,+∞)
C、[1,2)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-2x-3>0},B={x|x2+2x-8≤0},求A∩B,A∪B,B∪(CUA)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
sin2x-cos2x,則將f(x)的圖象向右平移
π
3
個單位所得曲線的一個對稱中心為( �。�
A、(
π
6
,0)
B、(
π
4
,0)
C、(
π
2
,0)
D、(
12
,0)

查看答案和解析>>

同步練習(xí)冊答案