A. | a≤-1 | B. | a<-1 | C. | a>1 | D. | a≥1 |
分析 作出可行域,根據(jù)可行域滿足的條件判斷可行域邊界x-2y=t的位置,列出不等式解出.
解答 解:作出不等式$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10≤0\\ x+y-8≤0\end{array}\right.$,可行域如圖:
∵平面區(qū)域內(nèi)存在點M(x0,y0),滿足x0+ay0+2≤0,
∴直線x+ay+2=0與可行域有交點,
解方程組$\left\{\begin{array}{l}{x-y+2=0}\\{x-5y+10=0}\end{array}\right.$得B(0,2).
∴點B在直線x+ay+2=0下方.
可得:0+2a+2≤0.解得a≤-1.
故選:A.
點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)可行域的條件判斷A點與可行域邊界x-2y=t的位置關(guān)系是關(guān)鍵.考查學(xué)生的推理能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{13}+2$ | B. | $2+\sqrt{3}i$ | C. | $\sqrt{13}+\sqrt{2}$ | D. | $\sqrt{13}+4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{30}}}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
變量x | 2.7 | 2.9 | 3 | 3.2 | 4.2 |
變量y | 46 | 49 | m | 53 | 55 |
A. | 50 | B. | 51 | C. | 52 | D. | 53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 216 | D. | 28 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com