對(duì)于任意實(shí)數(shù)x1,x2,max{x1,x2}表示x1,x2中較大的那個(gè)數(shù),則當(dāng)x∈R時(shí),函數(shù)f(x)=max的最大值與最小值的差是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的單調(diào)函數(shù)f(x),存在實(shí)數(shù)x0,使得對(duì)于任意實(shí)數(shù)x1,x2總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且對(duì)任意正整數(shù)n,有an=
1
f(n)
bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn;
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對(duì)任意不小于2的正整數(shù)n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x+k•2x+1
4x+2x+1
,若對(duì)于任意實(shí)數(shù)x1,x2,x3,均存在以f(x1),f(x2),f(x3)為三邊邊長(zhǎng)的三角形,則實(shí)數(shù)k的取值范圍是
-
1
2
≤k≤4
-
1
2
≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x),(x∈R*)對(duì)于任意實(shí)數(shù)x1、x2∈R*,都滿足f(x1x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0且f(4)=1
(1)求證:f(1)=0
(2)求f(
116
)
的值
(3)解不等式f(x)+f(x-3)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃岡模擬)已知定義在R上的單調(diào)函數(shù)f(x),存在實(shí)數(shù)x0,使得對(duì)于任意實(shí)數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對(duì)于任意正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關(guān)系,并給出證明;
(3)在(2)的條件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對(duì)任意不小于2的正整數(shù)n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)函數(shù)f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求實(shí)數(shù)a的值及f(x)的最大值;
(Ⅱ)求實(shí)數(shù)a的值,使得函數(shù)f(x)同時(shí)具備如下的兩個(gè)性質(zhì):
①對(duì)于任意實(shí)數(shù)x1,x2∈(0,1)且x1≠x2,
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②對(duì)于任意實(shí)數(shù)x1,x2∈(1,+∞)且x1≠x2,
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案