如圖,將圓分成n個區(qū)域,用3種不同顏色給每一個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an

(1)

a1,a2,a3,a4

(2)

anan+1(n≥2)的關(guān)系式

(3)

數(shù)列{an}的通項(xiàng)公式an,并證明an≥2n(n∈N+).

答案:
解析:

(1)

解:當(dāng)n=1時,不同的染色方法種數(shù)a1=3,

當(dāng)n=2時,不同的染色方法種數(shù)a2=6,

當(dāng)n=3時,不同的染色方法種數(shù)a3=6,

當(dāng)n=4時,分扇形區(qū)域1,3同色與異色兩種情形

∴不同的染色方法種數(shù)a4=3×1×2×2+3×2×1×1=18

(2)

解:依次對扇形區(qū)域1,2,3,…,n,n+1染色,不同的染色方法種數(shù)為3×2n,其中扇形區(qū)域1與n+1不同色的有an+1種,扇形區(qū)域1與n+1同色的有an

anan+1=3×2n(n≥2)

(3)

anan+1=3×2n(n≥2)

∴a2+a3=3×22

a3+a3=3×23

………………

an-1+an=3×2n-1

將上述個等式兩邊分別乘以(-1)k(k=2,3,…,n-1),再相加,得

,

an=2n+2·(-1)n

從而

證明:當(dāng)n=1時,a1=3>2×1

當(dāng)n=2時,a2=6>2×2,

當(dāng)n≥3時,

an≥2n(n∈N+)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將圓分成n個區(qū)域,用3種不同顏色給每一個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an.求
(Ⅰ)a1,a2,a3,a4;
(Ⅱ)an與an+1(n≥2)的關(guān)系式;
(Ⅲ)數(shù)列{an}的通項(xiàng)公式an,并證明an≥2n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將圓分成n個區(qū)域,用3種不同顏色給每個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an
(1)求a1,a2,a3,a4;
(2)求證:an+an+1=3×2n(n≥2);
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將圓分成n個區(qū)域,用3種不同顏色給每一個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an
(1)a4=
 

(2)an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南長沙重點(diǎn)中學(xué)高三上學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,將圓分成n個區(qū)域,用3種不同顏色給每一個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an.

(1)         ;

(2)         .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶二模 題型:解答題

如圖,將圓分成n個區(qū)域,用3種不同顏色給每一個區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an.求
(Ⅰ)a1,a2,a3,a4
(Ⅱ)an與an+1(n≥2)的關(guān)系式;
(Ⅲ)數(shù)列{an}的通項(xiàng)公式an,并證明an≥2n(n∈N*).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案