精英家教網 > 高中數學 > 題目詳情
球O球面上有三點A、B、C,已知AB=18,BC=24,AC=30,且球半徑是球心O到平面ABC的距離的2倍,求球O的表面積.
【答案】分析:說明三角形ABC是直角三角形,AC是斜邊,中點為M,OA=OB=OC是半徑,求出OM,利用球半徑是球心O到平面ABC的距離的2倍,求出半徑,即可求出球O的表面積.
解答:解:球面上三點A、B、C,平面ABC與球面交于一個圓,三點A、B、C在這個圓上
∵AB=18,BC=24,AC=30,
AC2=AB2+BC2,∴AC為這個圓的直徑,AC中點M圓心
球心O到平面ABC的距離即OM=球半徑的一半=R
△OMA中,∠OMA=90°,OM=R,AM=AC=30×=15,OA=R
由勾股定理(R)2+152=R2,R2=225
解得R=10
球的表面積S=4πR2=1200π(面積單位)
點評:本題是基礎題,考查空間想象能力,計算能力,確定三角形ABC的形狀以及利用球半徑是球心O到平面ABC的距離的2倍,是解好本題是前提.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

球O球面上有三點A、B、C,已知AB=18,BC=24,AC=30,且球半徑是球心O到平面ABC的距離的2倍,求球O的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

球面上有三點A,B,C,其中OA,OB,OC兩兩互相垂直(O為球心),且過A、B、C三點的截面圓的面積為4π,則球的表面積( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知球面上有三點A、B、C,AB=6cm,BC=8cm,AC=10cm,且球心O到平面ABC的距離為12,則球的半徑為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

球O球面上有三點A、B、C,已知AB=18,BC=24,AC=30,且球半徑是球心O到平面ABC的距離的2倍,求球O的表面積.

查看答案和解析>>

同步練習冊答案