【題目】已知,,直線,相交于點,且它們的斜率之積是.
(1)求點的軌跡的方程;
(2)過點的直線與軌跡交于點,與交于點,過作的垂直線交軸于點,求證:.
【答案】(1);(2)證明見解析.
【解析】
(1) 直接法求軌跡方程,利用 化簡可得.
(2) 設(shè)直線的方程為與橢圓方程聯(lián)解,求出、點坐標(biāo),再利用垂直關(guān)系求出點坐標(biāo),計算得可證.
(1)設(shè),則直線的斜率.直線的斜率,
依題意得,整理得,
所以點的軌跡的方程為.
(2)解法1:設(shè)直線的方程為,
聯(lián)立,消去整理得,
又,所以,即,,
易得,直線的斜率,
又,所以直線的方程為,
令得,所以直線的斜率,
又直線的斜率為,所以,所以.
解法2:設(shè)(其中),則直線,
令得,
所以直線的斜率.
又,所以直線的方程為,
所以直線的斜率,直線的斜率,
又,即,所以.
解法3:設(shè)直線,則直線的斜率,
,直線的斜率,
又,所以直線的方程為.
令得,
所以直線的斜率,所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九世紀(jì)末,法國學(xué)者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點”、“隨機(jī)中點”三個合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點”的方法如下:設(shè)A為圓O上一個定點,在圓周上隨機(jī)取一點B,連接AB,所得弦長AB大于圓O的內(nèi)接等邊三角形邊長的概率.則由“隨機(jī)端點”求法所求得的概率為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,某小區(qū)超市平面圖如圖所示,由矩形與扇形組成,米,米,,經(jīng)營者決定在點處安裝一個監(jiān)控攝像頭,攝像頭的監(jiān)控視角,攝像頭監(jiān)控區(qū)域為圖中陰影部分,要求點在弧上,點在線段上.設(shè).
(1)求該監(jiān)控攝像頭所能監(jiān)控到的區(qū)域面積關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)求監(jiān)控區(qū)域面積最大時,角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個棋子(如圖所示),甲從中記下某個棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年7月27日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進(jìn),并不斷刷新華語電影票房紀(jì)錄.繼8月25日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯誤的是( )
A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增
B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12天
C.在《戰(zhàn)狼2》上映前兩周中,8月5日,8月6日達(dá)到了票房的高峰期
D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a是實數(shù),關(guān)于z的方程(z2-2z+5)(z2+2az+1)=0有4個互不相等的根,它們在復(fù)平面上對應(yīng)的4個點共圓,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當(dāng)直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標(biāo)為
(1)求橢圓的方程;
(2)點為內(nèi)一點,為坐標(biāo)原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,圓心為坐標(biāo)原點的單位圓O在C的內(nèi)部,且與C有且僅有兩個公共點,直線與C只有一個公共點.
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)不垂直于坐標(biāo)軸的動直線l過橢圓C的左焦點F,直線l與C交于A,B兩點,且弦AB的中垂線交x軸于點P,試求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com