精英家教網 > 高中數學 > 題目詳情

【題目】已知{an}是一個等差數列,且a2=1,a5=﹣5.
(Ⅰ)求{an}的通項an;
(Ⅱ)求{an}前n項和Sn的最大值.

【答案】解:(Ⅰ)設{an}的公差為d,由已知條件, ,
解出a1=3,d=﹣2,所以an=a1+(n﹣1)d=﹣2n+5.
(Ⅱ) =4﹣(n﹣2)2
所以n=2時,Sn取到最大值4
【解析】(Ⅰ)用兩個基本量a1 , d表示a2 , a5 , 再求出a1 , d.代入通項公式,即得.(Ⅱ)將Sn的表達式寫出,是關于n的二次函數,再由二次函數知識可解決之.
【考點精析】本題主要考查了等差數列的通項公式(及其變式)和等差數列的前n項和公式的相關知識點,需要掌握通項公式:;前n項和公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,已知F1 , F2分別是橢圓E: 的左、右焦點,A,B分別是橢圓E的左、右頂點,且

(1)求橢圓E的離心率;
(2)已知點D(1,0)為線段OF2的中點,M 為橢圓E上的動點(異于點A、B),連接MF1并延長交橢圓E于點N,連接MD、ND并分別延長交橢圓E于點P、Q,連接PQ,設直線MN、PQ的斜率存在且分別為k1、k2 , 試問是否存在常數λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C: 的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為 ,點M的橫坐標為

(1)求橢圓C的標準方程;
(2)若∠FPA為直角,求P點坐標;
(3)設直線PA的斜率為k1 , 直線MA的斜率為k2 , 求k1k2的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017湖南長沙二!已知橢圓)的離心率為分別是它的左、右焦點,且存在直線,使關于的對稱點恰好是圓)的一條直線的兩個端點.

(1)求橢圓的方程;

(2)設直線與拋物線)相交于兩點,射線,與橢圓分別相交于點,試探究:是否存在數集,當且僅當時,總存在,使點在以線段為直徑的圓內?若存在,求出數集;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某生產甲,乙兩種產品,生產這兩種產品每噸需要的煤,電以及每噸產品的產值如表所示.若每天配給該廠的煤至多56噸,供電至多45千瓦,問該廠如何安排生產,使該廠日產值最大?

用煤/噸

用電/千瓦

產值/萬元

甲種產品

7

2

8

乙種產品

3

5

11

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列是全稱命題并且是真命題的是(
A.?x∈R,x2>0
B.?x,y∈R,x2+y2>0
C.?x∈Q,x2∈Q
D.?x0∈Z,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x+2x
(1)用定義法證明:函數f(x)是區(qū)間(0,+∞)上的增函數;
(2)若x∈[﹣1,2],求函數g(x)=2x[f(x)﹣2]﹣3的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】荊州市某重點學校為了了解高一年級學生周末雙休日在家活動情況,打算從高一年級1256名學生中抽取50名進行抽查,若采用下面的方法選。合扔煤唵坞S機抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進行,則每人入選的機會(
A.不全相等
B.均不相等
C.都相等
D.無法確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017蘇北四市一模19】已知函數

(1)解關于的不等式

(2)證明:;

(3)是否存在常數,使得對任意的恒成立?若存在,求

的值;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案