【題目】選修4-4:參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程,并 C的焦點(diǎn)F的直角坐標(biāo);

2)已知點(diǎn),若直線C相交于A,B兩點(diǎn),且,求的面積.

【答案】1 2

【解析】試題分析:(1根據(jù)曲線的極坐標(biāo)方程為直角坐標(biāo)方程根據(jù)拋物線性質(zhì)得焦點(diǎn)直角坐標(biāo)(2利用直線參數(shù)方程幾何意義化簡(jiǎn)聯(lián)立直線參數(shù)方程與拋物線方程,利用韋達(dá)定理代入化簡(jiǎn)得,從而可得,即得的面積.

試題解析:(Ⅰ)原方程變形為,

C的直角坐標(biāo)方程為,其焦點(diǎn)為

(Ⅱ)把的方程代入

平方得

把①代入②得是直線的傾斜角,

的普通方程為

∴△FAB的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移 個(gè)單位后,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的最大值及取得最大值時(shí)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是y1 , y2萬(wàn)元,它們與投入資金x萬(wàn)元的關(guān)系分別為y1=m +a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1 , y2對(duì)應(yīng)的曲線C1 , C2如圖所示.

(1)求函數(shù)y1與y2的解析式;
(2)若該商場(chǎng)一共投資10萬(wàn)元經(jīng)銷甲、乙兩種商品,求該商場(chǎng)所獲利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)求不等式的解集

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(1)求的方程;

(2)是否存在直線相交于兩點(diǎn),且滿足:①為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)A(2,3)、B(4,1),直線l:x+2y﹣2=0,在直線l上求一點(diǎn)P.
(1)使|PA|+|PB|最;
(2)使|PA|﹣|PB|最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果執(zhí)行如圖的程序框圖,若輸入n=6,m=4,那么輸出的p等于(
A.720
B.360
C.240
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的圖象與y軸的交點(diǎn)為( ),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和最低點(diǎn)分別為(x0 , 3),(x0+2π,﹣3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個(gè)函數(shù)的單調(diào)遞增區(qū)間和對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案