精英家教網 > 高中數學 > 題目詳情

已知函數.

(1)求的單調區(qū)間;

(2)設,若對任意,均存在,使得,求的取值范圍.

 

【答案】

(1) 函數的單調遞增區(qū)間為,單調遞減區(qū)間為

 (2)

【解析】本試題主要是考查了導數在研究函數中的運用。

(1)函數,求解定義域和導數,然后利用導數的正負號判定單調性。

(2)由已知,轉化為.,然后分別求解最值得到參數的范圍。

解:(1),      ………………2分

①當時,由于,故,          ………………3分

 所以,的單調遞增區(qū)間為.         ………………4分

②當時,由,得. ………………5分

在區(qū)間上,,在區(qū)間

所以,函數的單調遞增區(qū)間為,單調遞減區(qū)間為.…………7分

(2)由已知,轉化為.                     ………………8分

                                               ………………9分

由(1)知,當時,上單調遞增,值域為,故不符合題意.

(或者舉出反例:存在,故不符合題意.)      ………………11分

時,上單調遞增,在上單調遞減,

的極大值即為最大值,,   ………14分

所以,解得.           ………15分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題滿分14分)已知函數.(1) 求函數的最小正周期,并寫出函數圖象的對稱軸方程;(2) 若,求函數的值域.

查看答案和解析>>

科目:高中數學 來源:2013-2014學年山東省濟南市高三上學期期末考試理科數學試卷(解析版) 題型:解答題

已知函數

(1)求的單調區(qū)間;

(2)若,在區(qū)間恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2015屆浙江省寧波市高一下學期期中考試文科數學試卷(解析版) 題型:解答題

已知函數,

(1)求函數的單調遞減區(qū)間;

(2)當時,求函數的最值及相應的.

 

查看答案和解析>>

科目:高中數學 來源:2014屆山東省濟寧市高二5月質量檢測理科數學試卷(解析版) 題型:解答題

已知函數

(1)求的單調區(qū)間;

(2)當時,判斷的大小,并說明理由;

(3)求證:當時,關于的方程:在區(qū)間上總有兩個不同的解.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省汕頭市高三畢業(yè)班教學質量檢測文科數學(含解析) 題型:解答題

(本題滿分14分)

    已知函數,

    (1)求的最小值;

(2)若對所有都有,求實數的取值范圍.

 

 

查看答案和解析>>

同步練習冊答案